Techno-enviro-economic design of small-scale membrane-based seawater desalination systems integrated with hybrid autonomous renewable power systems
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Wiley
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This article aims to search the technical, environmental, and economic model of an off-grid hybrid power generation system that supplies electricity to a seawater reverse osmosis (RO) system. Net present cost (NPC) and levelized cost of electricity (LCOE) values were used to determine the optimal system sizing powering a reverse osmosis desalination system for different sites where is located south and west coast of Turkiye. In the proposed power systems, PV panels, wind turbines, diesel generators, lead-acid batteries, and converters were used. In the instance where the lowest LCOE of 0.301$/kWh is calculated, the optimal system comprises of a 25.7 kW PV array, one wind turbine (rated at 10 kW), 152 kWh LA batteries, and a 6.76 kW converter. The levelized cost of water (LCOW) value for this case was calculated as 1.168 $/m(3). The LCOE value was calculated as 0.529 $/kWh for the power system, which is considered as a base case and consists of only a diesel generator, where no renewable energy source is used. For the base case, the carbon footprint of electricity generation is 35,127 kg/year. According to CO2 sequestration analysis result, the number of trees (Pinus Brutia) to be planted was calculated as approximately 164 tree/year over the lifetime of the power system for base case.
Açıklama
Anahtar Kelimeler
desalination, hybrid power system, levelized water cost, water scarcity
Kaynak
Environmental Progress & Sustainable Energy
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
43
Sayı
1