Micro level two dimensional stress and thermal analysis anode/electrolyte interface of a solid oxide fuel cell

dc.authorid0000-0002-7306-9784
dc.authorid0000-0001-6395-4424
dc.contributor.authorCelik, Selahattin
dc.contributor.authorIbrahimoglu, Beycan
dc.contributor.authorMat, Mahmut D.
dc.contributor.authorKaplan, Yuksel
dc.contributor.authorVeziroglu, T. Nejat
dc.date.accessioned2019-08-01T13:38:39Z
dc.date.available2019-08-01T13:38:39Z
dc.date.issued2015
dc.departmentNiğde ÖHÜ
dc.description.abstractThe delamination and degradation of solid oxide fuel cells (SOFCs) electrode/electrolyte interface is estimated by calculating the stresses generated within the different layers of the cell. The stresses developed in a SOFC are usually assumed to be homogenous through a cross section in the mathematical models at macroscopic scales. However, during the operating of these composite materials the real stresses on the multiphase porous layers might be very different than those at macro-scale. Therefore micro-level modeling is needed for an accurate estimation of the real stresses and the performance of SOFC. This study combines the microstructural characterization of a porous solid oxide fuel cell anode/electrolyte with two dimensional mechanical and electrochemical analyses to investigate the stress and the overpotential. The microstructure is determined by using focused ion beam (FIB) tomography and the resulting microstructures are used to generate a solid mesh of two dimensional triangular elements. COMSOL Multiphysics package is employed to calculate the principal stress and Maxwell Stefan Diffusion. The stress field is calculated from room temperature to operating temperature while the overpotential is calculated at operating temperature. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.ijhydene.2014.10.057
dc.identifier.endpage7902
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.issue24
dc.identifier.scopus2-s2.0-84930382938
dc.identifier.scopusqualityQ1
dc.identifier.startpage7895
dc.identifier.urihttps://dx.doi.org/10.1016/j.ijhydene.2014.10.057
dc.identifier.urihttps://hdl.handle.net/11480/3919
dc.identifier.volume40
dc.identifier.wosWOS:000356549000054
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthor[0-Belirlenecek]
dc.language.isoen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relation.ispartofINTERNATIONAL JOURNAL OF HYDROGEN ENERGY
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSolid oxide fuel cell
dc.subjectMicro level modeling
dc.subjectStress analysis
dc.subjectSOFC anode
dc.subjectOverpotential
dc.titleMicro level two dimensional stress and thermal analysis anode/electrolyte interface of a solid oxide fuel cell
dc.typeArticle

Dosyalar