A NOVEL MACHINE LEARNING STUDY: MAXIMIZING THE EFFICIENCY OF PARABOLIC TROUGH SOLAR COLLECTORS WITH ENGINE OIL-BASED COPPER AND SILVER NANOFLUIDS
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Begell House Inc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Estimating the heat transfer parameters of parabolic trough solar collectors with machine learning is crucial for improving the efficiency and performance of these renewable energy systems, optimizing their design and operation, and reducing costs while increasing the use of solar energy as a sustainable power source. In this study, the heat transfer characteristics of two different nanofluids flowing through the porous media in a straight plane underneath thermal jump conditions were investigated by machine learning methods. For the flow in the parabolic trough solar collector, two different nanofluids obtained from silver- and copper-based motor oil are considered. Flow characteristics were obtained by nonlinear surface tension, thermal radiation, and Cattaneo-Christov heat flow, which was used to calculate the heat flow in the thermal boundary layer. A neural network structure was established to estimate the skin friction and Nusselt number determined for the analysis of the flow characteristic. The data used in the multilayer neural network, which was developed using a total of 30 data sets, were divided into three groups as training, validation, and testing. In the input layer of the network model with 15 neurons in the hidden layer, 10 parameters were defined and four different results were obtained for two different nanofluids in the output layer. The prediction performance of the established neural network model has been comprehensively studied by means of several performance parameters. The study findings presented that the established artificial neural network can predict the heat transfer characteristics of two different nanofluids obtained from silver- and copper-based motor oil with deviation rates less than 0.06%.
Açıklama
Anahtar Kelimeler
parabolic trough solar collectors, nanofluids, engine oil, heat transfer, machine learning
Kaynak
Heat Transfer Research
WoS Q Değeri
N/A
Scopus Q Değeri
Q3
Cilt
55
Sayı
16