Lucas numbers of the form (k2t)
dc.authorid | IRMAK, Nurettin/0000-0003-0409-4342 | |
dc.authorid | Szalay, Laszlo/0000-0002-4582-6100 | |
dc.contributor.author | Irmak, Nurettin | |
dc.contributor.author | Szalay, Laszlo | |
dc.date.accessioned | 2024-11-07T13:31:51Z | |
dc.date.available | 2024-11-07T13:31:51Z | |
dc.date.issued | 2019 | |
dc.department | Niğde Ömer Halisdemir Üniversitesi | |
dc.description.abstract | Let L-m denote the m(th) Lucas number. We show that the solutions to the diophantine equation ((2t)(k)) = L-m, in non-negative integers t, k <= 2(t-1), and m, are (t, k, m) = (1, 1, 0), (2,1, 3), and (a, 0,1) with non-negative integers a. | |
dc.identifier.doi | 10.12697/ACUTM.2019.23.06 | |
dc.identifier.endpage | 70 | |
dc.identifier.issn | 1406-2283 | |
dc.identifier.issn | 2228-4699 | |
dc.identifier.issue | 1 | |
dc.identifier.scopus | 2-s2.0-85073285209 | |
dc.identifier.scopusquality | Q4 | |
dc.identifier.startpage | 65 | |
dc.identifier.uri | https://doi.org/10.12697/ACUTM.2019.23.06 | |
dc.identifier.uri | https://hdl.handle.net/11480/15070 | |
dc.identifier.volume | 23 | |
dc.identifier.wos | WOS:000481498100006 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Univ Tartu Press | |
dc.relation.ispartof | Acta Et Commentationes Universitatis Tartuensis De Mathematica | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241106 | |
dc.subject | Lucas number | |
dc.subject | binomial coefficient | |
dc.subject | diophantine equation | |
dc.title | Lucas numbers of the form (k2t) | |
dc.type | Article |