Lucas numbers of the form (k2t)

dc.authoridIRMAK, Nurettin/0000-0003-0409-4342
dc.authoridSzalay, Laszlo/0000-0002-4582-6100
dc.contributor.authorIrmak, Nurettin
dc.contributor.authorSzalay, Laszlo
dc.date.accessioned2024-11-07T13:31:51Z
dc.date.available2024-11-07T13:31:51Z
dc.date.issued2019
dc.departmentNiğde Ömer Halisdemir Üniversitesi
dc.description.abstractLet L-m denote the m(th) Lucas number. We show that the solutions to the diophantine equation ((2t)(k)) = L-m, in non-negative integers t, k <= 2(t-1), and m, are (t, k, m) = (1, 1, 0), (2,1, 3), and (a, 0,1) with non-negative integers a.
dc.identifier.doi10.12697/ACUTM.2019.23.06
dc.identifier.endpage70
dc.identifier.issn1406-2283
dc.identifier.issn2228-4699
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85073285209
dc.identifier.scopusqualityQ4
dc.identifier.startpage65
dc.identifier.urihttps://doi.org/10.12697/ACUTM.2019.23.06
dc.identifier.urihttps://hdl.handle.net/11480/15070
dc.identifier.volume23
dc.identifier.wosWOS:000481498100006
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherUniv Tartu Press
dc.relation.ispartofActa Et Commentationes Universitatis Tartuensis De Mathematica
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241106
dc.subjectLucas number
dc.subjectbinomial coefficient
dc.subjectdiophantine equation
dc.titleLucas numbers of the form (k2t)
dc.typeArticle

Dosyalar