New frameworks to boost feature selection algorithms in emotion detection for improved human-computer interaction
Küçük Resim Yok
Tarih
2007
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
SPRINGER-VERLAG BERLIN
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
One of the primary aims in human-computer interaction research is to develop an ability to recognize affective state of the user. Such ability is indispensable to have a more human-like nature in human-computer interaction. However, the researches in this direction are not mature and intensive efforts have only been witnessed recently. This work envisages the possibility of enhancing feature selection phase of emotion detection task to obtain robust parameters which will be determined from verbal information to achieve an improved affective human-computer interaction. As highly informative feature selection is believed to be a more critical factor than classifier itself, recent studies have increasingly focussed on determining features that contribute more to the classification problem. Two new frameworks for multi-class emotion detection problem are proposed in this paper, so as to boost the feature selection algorithms in a way that the selected features will be more informative in terms of class-separability. Evaluation of the selected final features is accomplished by multi-class classifiers. Results show that the proposed frameworks are successful in terms of attaining lower average cross-validation error.
Açıklama
2nd International Symposium on Brain, Vision and Artificial Intelligence -- OCT 10-12, 2007 -- Naples, ITALY
Anahtar Kelimeler
human-computer interaction, emotion detection, affective computing, pattern recognition
Kaynak
ADVANCES IN BRAIN, VISION, AND ARTIFICIAL INTELLIGENCE, PROCEEDINGS
WoS Q Değeri
N/A
Scopus Q Değeri
Q3
Cilt
4729