Sparsity-aware complex-valued least mean kurtosis algorithms
dc.contributor.author | Ozince, Nazim | |
dc.contributor.author | Menguc, Engin Cemal | |
dc.contributor.author | Emlek, Alper | |
dc.date.accessioned | 2024-11-07T13:25:24Z | |
dc.date.available | 2024-11-07T13:25:24Z | |
dc.date.issued | 2025 | |
dc.department | Niğde Ömer Halisdemir Üniversitesi | |
dc.description.abstract | Complex-valued least mean kurtosis (CLMK) algorithm and its augmented version (ACLMK) have recently become popular as workhorse tools in the processing of complex-valued signals due to their superior performances. Unfortunately, they are not yet suitable for sparse system identification problems. In this paper, combining the well-known sparsity-promoting strategies into the cost function based on the negated kurtosis of the error signal, we introduce a suit of sparsity-aware CLMK algorithms, named /0 0-norm CLMK (/0-CLMK), / 0-CLMK), / 0-ACLMK, zero-attraction CLMK (ZA-CLMK), ZA-ACLMK, reweighted ZA-CLMK (RZA-CLMK), and RZA-ACLMK. Simulation results on synthetic and real-world sparse system identification scenarios in the complex domain show that the proposed algorithms outperform the existing sparsity-aware algorithms in terms of convergence rate, tracking, and steady-state error. | |
dc.identifier.doi | 10.1016/j.sigpro.2024.109637 | |
dc.identifier.issn | 0165-1684 | |
dc.identifier.issn | 1872-7557 | |
dc.identifier.scopus | 2-s2.0-85200759681 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.sigpro.2024.109637 | |
dc.identifier.uri | https://hdl.handle.net/11480/14675 | |
dc.identifier.volume | 226 | |
dc.identifier.wos | WOS:001292170300001 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.ispartof | Signal Processing | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241106 | |
dc.subject | Complex-valued least mean kurtosis | |
dc.subject | Complex-valued signals | |
dc.subject | Sparse system identification | |
dc.subject | Augmented statistics | |
dc.title | Sparsity-aware complex-valued least mean kurtosis algorithms | |
dc.type | Article |