Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application

dc.authorid0000-0002-7572-7963
dc.authorid0000-0002-4851-3062
dc.authorid0000-0002-5818-9737
dc.authorid0000-0003-2123-2938
dc.authorid0000-0003-0635-7169
dc.contributor.authorKilinc, Necmettin
dc.contributor.authorCakmak, Onur
dc.contributor.authorKosemen, Arif
dc.contributor.authorErmek, Erhan
dc.contributor.authorOzturk, Sadullah
dc.contributor.authorYerli, Yusuf
dc.contributor.authorUrey, Hakan
dc.date.accessioned2019-08-01T13:38:39Z
dc.date.available2019-08-01T13:38:39Z
dc.date.issued2014
dc.departmentNiğde ÖHÜ
dc.description.abstractThis study reports the fabrication method and sensing performance for novel 1D zinc oxide (ZnO) nanorods and nanotubes grown on nickel MEMS cantilevers. The fabrication of the nanostructures and the cantilevers are simple and low-cost using standard lithography, electrodeposition, and hydrothermal etching processes. 1D ZnO nanostructures increase the total sensitive area for biological and chemical sensor applications. We performed experiments with various VOCs with a real-time sensor system developed in our laboratory. While Ni microcantilevers produced no signal, ZnO nanostructure coated microcantilevers showed good sensitivity and repeatable changes. Furthermore, the nanotube coated microcantilevers showed more than 10 fold increase in sensitivity compared to the nanorod coated microcantilevers which can be explained to the fact that ZnO nanotubes have higher surface area and subsurface oxygen vacancies and these provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods. The tests are performed using dynamic mode of operation near resonant frequency using magnetic actuation and optical sensing. The phase stability and the limit of detection of ZnO nanotube coated microcantilevers exposed to diethylamine (DEA) were 0.02 degrees and lower than 10 ppm, respectively. ZnO nanostructure coated microcantilevers have good potential for VOC sensor applications especially for amine groups. (C) 2014 Elsevier B.V. All rights reserved.
dc.description.sponsorshipTUBITAK-BIDEB National Postdoctoral Research Fellowship Program; TUBITAK [111E184, 113F403]
dc.description.sponsorshipNecmettin Kilinc was supported by TUBITAK-BIDEB National Postdoctoral Research Fellowship Program. The authors thank KUY-TAM and Dr. Bans Yagci for SEM measurements. This research is supported by TUBITAK Grant no.: 111E184 and 113F403.
dc.identifier.doi10.1016/j.snb.2014.05.078
dc.identifier.endpage364
dc.identifier.issn0925-4005
dc.identifier.scopus2-s2.0-84902489808
dc.identifier.scopusqualityQ1
dc.identifier.startpage357
dc.identifier.urihttps://dx.doi.org/10.1016/j.snb.2014.05.078
dc.identifier.urihttps://hdl.handle.net/11480/4120
dc.identifier.volume202
dc.identifier.wosWOS:000339994900047
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthor[0-Belirlenecek]
dc.language.isoen
dc.publisherELSEVIER SCIENCE SA
dc.relation.ispartofSENSORS AND ACTUATORS B-CHEMICAL
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMicroelectromechanical systems
dc.subjectChemical sensors
dc.subjectVOC sensing
dc.subjectZinc oxide
dc.subjectNanorods
dc.subjectNanotubes
dc.titleFabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application
dc.typeArticle

Dosyalar