Investigation of the friction coefficient in smooth open channel flows [Serbest Yuzeyli Puruzsuz Kanallarda Yuk Kayip Katsayisinin Incelenmesi]
Küçük Resim Yok
Tarih
2000
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Scientific and Technical Research Council of Turkey, Ankara, Turkey
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In practical engineering, the friction coefficient formulations developed for circular pipes are usually assumed to be valid for open channels and used in derivation of mathematical formulation. However, with the advent of more accurate measurement devices, it is now clear that such formulations cannot be used in open channels without modifications. The phenomena such as free surface, different wet surfaces with irregular shear stresses and secondary flows, make open channel flows more complicated than circular pipe flows. A new formulation for the friction coefficient is developed depending on the Reynolds Number (Re) and W/h, which is the ratio of channel width to its height. It is found that there is a 10 % difference in the friction coefficient in circular pipe flow and open channel flow under the same conditions. The new correlation agrees satisfactorily with those in the literature. The relation between ? and Re in circular pipe flow is found to be deviate in open channel flows. In this research a formulation similar to the Blasius equation is proposed for rectangular channels.In practical engineering, the friction coefficient formulations developed for circular pipes are usually assumed to be valid for open channels and used in derivation of mathematical formulation. However, with the advent of more accurate measurement devices, it is now clear that such formulations cannot be used in open channels without modifications. The phenomena such as free surface, different wet surfaces with irregular shear stresses and secondary flows, make open channel flows more complicated than circular pipe flows. A new formulation for the friction coefficient is developed depending on the Reynolds Number (Re) and W/h, which is the ratio of channel width to its height. It is found that there is a 10% difference in the friction coefficient in circular pipe flow and open channel flow under the same conditions. The new correlation agrees satisfactorily with those in the literature. The relation between ? and Re in circular pipe flow is found to be deviate in open channel flows. In this research a formulation similar to the Blasius equation is proposed for rectangular channels.
Açıklama
Anahtar Kelimeler
Energy loss, Friction factor, Open channel
Kaynak
Turkish Journal of Engineering and Environmental Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
24
Sayı
5