Oscillation of second-order nonlinear neutral dynamic equations on time scales with distributed deviating arguments

dc.authorid0000-0002-6603-3732
dc.contributor.authorCandan, T.
dc.date.accessioned2019-08-01T13:38:39Z
dc.date.available2019-08-01T13:38:39Z
dc.date.issued2011
dc.departmentNiğde ÖHÜ
dc.description.abstractThis article is concerned with oscillation of second-order neutral dynamic equations with distributed deviating arguments of the form (r(t) ((y(t) + p(t)y(tau(t)))(Delta))(gamma)) + integral(d)(c) f(t, y(theta(t, xi))) Delta xi = 0, where gamma > 0 is a ratio of odd positive integers with r(t) and p(t) real-valued rd-continuous positive functions defined on T. We establish some new oscillation criteria and give sufficient conditions to insure that all solutions of nonlinear neutral dynamic equation are oscillatory on a time scale T. (C) 2011 Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.camwa.2011.09.062
dc.identifier.endpage4125
dc.identifier.issn0898-1221
dc.identifier.issue11
dc.identifier.scopus2-s2.0-80755136638
dc.identifier.scopusqualityQ1
dc.identifier.startpage4118
dc.identifier.urihttps://dx.doi.org/10.1016/j.camwa.2011.09.062
dc.identifier.urihttps://hdl.handle.net/11480/4668
dc.identifier.volume62
dc.identifier.wosWOS:000297963800013
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorCandan, T.
dc.language.isoen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relation.ispartofCOMPUTERS & MATHEMATICS WITH APPLICATIONS
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectOscillation
dc.subjectDynamic equations
dc.subjectTime scales
dc.subjectDistributed deviating arguments
dc.titleOscillation of second-order nonlinear neutral dynamic equations on time scales with distributed deviating arguments
dc.typeArticle

Dosyalar