Reliability modeling and analysis of mixture of exponential distributions using artificial neural network
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Wiley
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In recent years, statisticians have become more and more interested in the study of mixture models, especially in the last decade, without adequately considering the difficulty of modeling the reliability measures of mixture models using artificial neural networks. In this study, in which artificial neural networks and mixed model reliability criteria are analyzed, various reliability parameters are calculated considering different scenarios. In order to estimate the obtained numerical reliability parameters, a multilayer artificial neural network model has been developed. Seven different reliability parameter values have been obtained from the artificial neural network model designed with four input parameters. The prediction values obtained from the artificial neural network model developed with five neurons in the hidden layer have been compared with numerical data, and the performance of the model has been analyzed comprehensively. The mean squared error (MSE) value for the network model has been calculated as 1.98E-08 and the R value as 0.99991. The results clearly revealed that the artificial neural network model developed using data from the appropriate statistical model is an excellent tool that can be used to estimate reliability measures.
Açıklama
Anahtar Kelimeler
artificial neural network, mean inactivity time, mean residual life, mean time to failure, reliability function
Kaynak
Mathematical Methods in the Applied Sciences
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
47
Sayı
5