FPGA implementation of neuro-fuzzy system with improved PSO learning

Küçük Resim Yok

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

PERGAMON-ELSEVIER SCIENCE LTD

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This paper presents the first hardware implementation of neuro-fuzzy system (NFS) with its metaheuristic learning ability on field programmable gate array (FPGA). Metaheuristic learning of NFS for all of its parameters is accomplished by using the improved particle swarm optimization (iPSO). As a second novelty, a new functional approach, which does not require any memory and multiplier usage, is proposed for the Gaussian membership functions of NFS. NFS and its learning using iPSO are implemented on Xilinx Virtex5 xc5vlx110-3ff1153 and efficiency of the proposed implementation tested on two dynamic system identification problems and licence plate detection problem as a practical application. Results indicate that proposed NFS implementation and membership function approximation is as effective as the other approaches available in the literature but requires less hardware resources. (C) 2016 Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

Neuro-fuzzy network, FPGA implementation, VHDL, System identification, Metaheuristic learning

Kaynak

NEURAL NETWORKS

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

79

Sayı

Künye