Estimation of brainstem auditory evoked potentials using a nonlinear adaptive filtering algorithm

Küçük Resim Yok

Tarih

2013

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

SPRINGER

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, we introduce a novel nonlinear system not only for tracking of both the latency and amplitude variations in brainstem auditory evoked potential (BAEP), but also for reduction of single-trial numbers in BAEP pattern extraction process. Trial-to-trial variations in auditory evoked potential (AEP) are very important in quantifying dynamical properties of the nervous system and in specifying the group-specific effects in clinical applications. Due to the nonlinear dynamics of the AEP, a nonlinear adaptive filtering technique is considered as a powerful tool for tracking such variations. Therefore, we have designed a wavelet network-based nonlinear adaptive filter (WaNe-NAF) satisfying asymptotic stability in the sense of Lyapunov. The simulation results are verified that the proposed WaNe-NAF can effectively track the trial-to-trial variations. We have also compared the WaNe-NAF with the most widely used ensemble averaging technique using real measured human BAEP data. The WaNe-NAF shows promise for requiring less number of ensembles than conventional ensemble averaging method to attain adequate signal quality. As a result, the proposed filtering system is suggested as a powerful tool in AEP acquisition and processing systems.

Açıklama

Anahtar Kelimeler

Auditory evoked potential, Nonlinear adaptive filtering, Wavelet network, Lyapunov stability

Kaynak

NEURAL COMPUTING & APPLICATIONS

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

22

Sayı

6

Künye