Melatonin-mediated temperature stress tolerance in plants

dc.authoridRahman, Md Atikur/0000-0001-6779-9599
dc.authoridCharagh, Sidra/0000-0002-8077-7324
dc.authoridJin, Wanmei/0000-0002-2356-7806
dc.authoridSAEED, FAISAL/0000-0002-3508-1213
dc.authoridRaza, Ali/0000-0002-5120-2791
dc.contributor.authorRaza, Ali
dc.contributor.authorCharagh, Sidra
dc.contributor.authorGarcia-Caparros, Pedro
dc.contributor.authorRahman, Md Atikur
dc.contributor.authorOgwugwa, Vincent H.
dc.contributor.authorSaeed, Faisal
dc.contributor.authorJin, Wanmei
dc.date.accessioned2024-11-07T13:35:24Z
dc.date.available2024-11-07T13:35:24Z
dc.date.issued2022
dc.departmentNiğde Ömer Halisdemir Üniversitesi
dc.description.abstractGlobal climate changes cause extreme temperatures and a significant reduction in crop production, leading to food insecurity worldwide. Temperature extremes (including both heat and cold stresses) is one of the most limiting factors in plant growth and development and severely affect plant physiology, biochemical, and molecular processes. Biostimulants like melatonin (MET) have a multifunctional role that acts as a defense molecule to safeguard plants against the noxious effects of temperature stress. MET treatment improves plant growth and temperature tolerance by improving several defense mechanisms. Current research also suggests that MET interacts with other molecules, like phytohormones and gaseous molecules, which greatly supports plant adaptation to temperature stress. Genetic engineering via overexpression or CRISPR/Cas system of MET biosynthetic genes uplifts the MET levels in transgenic plants and enhances temperature stress tolerance. This review highlights the critical role of MET in plant production and tolerance against temperature stress. We have documented how MET interacts with other molecules to alleviate temperature stress. MET-mediated molecular breeding would be great potential in helping the adverse effects of temperature stress by creating transgenic plants.
dc.identifier.doi10.1080/21645698.2022.2106111
dc.identifier.endpage217
dc.identifier.issn2164-5698
dc.identifier.issn2164-5701
dc.identifier.issue1
dc.identifier.pmid35983948
dc.identifier.scopus2-s2.0-85136128280
dc.identifier.scopusqualityQ1
dc.identifier.startpage196
dc.identifier.urihttps://doi.org/10.1080/21645698.2022.2106111
dc.identifier.urihttps://hdl.handle.net/11480/16466
dc.identifier.volume13
dc.identifier.wosWOS:000842293300001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherTaylor & Francis As
dc.relation.ispartofGm Crops & Food-Biotechnology in Agriculture and the Food Chain
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241106
dc.subjectBiostimulants
dc.subjectclimate change
dc.subjectcold stress
dc.subjectcrosstalk
dc.subjectfood security
dc.subjectfreezing temperature
dc.subjectgenetic engineering
dc.titleMelatonin-mediated temperature stress tolerance in plants
dc.typeReview Article

Dosyalar