On the Schlafli differential formula based on edge lengths of tetrahedron in H-3 and S-3

dc.contributor.authorYakut, Atakan T.
dc.contributor.authorSavas, Murat
dc.contributor.authorKader, Serkan
dc.date.accessioned2019-08-01T13:38:39Z
dc.date.available2019-08-01T13:38:39Z
dc.date.issued2009
dc.departmentNiğde ÖHÜ
dc.description.abstractWe obtain a new version of Schlafli differential formula based on edge lengths for the volume of a tetrahedron in hyperbolic and spherical 3-spaces, by using the edge matrix of a hyperbolic( or spherical) tetrahedron and its submatrix.
dc.identifier.doi10.1007/s10711-008-9301-x
dc.identifier.endpage115
dc.identifier.issn0046-5755
dc.identifier.issn1572-9168
dc.identifier.issue1
dc.identifier.scopus2-s2.0-58149166764
dc.identifier.scopusqualityQ2
dc.identifier.startpage99
dc.identifier.urihttps://dx.doi.org/10.1007/s10711-008-9301-x
dc.identifier.urihttps://hdl.handle.net/11480/5099
dc.identifier.volume138
dc.identifier.wosWOS:000262124300007
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthor[0-Belirlenecek]
dc.language.isoen
dc.publisherSPRINGER
dc.relation.ispartofGEOMETRIAE DEDICATA
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHyperbolic tetrahedron
dc.subjectEdge matrix
dc.subjectGram matrix
dc.subjectEdge length
dc.subjectVolume differential
dc.titleOn the Schlafli differential formula based on edge lengths of tetrahedron in H-3 and S-3
dc.typeArticle

Dosyalar