Investigation of micro-tube solid oxide fuel cell fabrication using extrusion method

dc.authorid0000-0001-6916-7720
dc.contributor.authorMat, Abdullah
dc.contributor.authorCanavar, Murat
dc.contributor.authorTimurkutluk, Bora
dc.contributor.authorKaplan, Yuksel
dc.date.accessioned2019-08-01T13:38:39Z
dc.date.available2019-08-01T13:38:39Z
dc.date.issued2016
dc.departmentNiğde ÖHÜ
dc.description1st International Symposium on Materials for Energy Storage and Conversion (ESC-IS) -- SEP 07-09, 2015 -- Middle E Tech Univ, Ankara, TURKEY
dc.description.abstractExtrusion is one of the most effective and inexpensive methods used in the production of ceramic tubes for tubular or micro-tubular solid oxide fuel cell (SOFC) applications. In this method, the parameters such as the viscosity of the ceramic slurry, the extrusion speed and the die temperature need to be optimized for a high performance. In this study, anode supported micro-tubular solid oxide fuel cells are successfully fabricated via a specially designed vertical-type piston extruder machine. The die design enables the production of micro-tubular SOFCs with outer diameters from 3 to 4.5 mm. The die temperature is determined to be the most important process parameter and the suitable die temperature is ranging 40-70 degrees C depending on the slurry content. The electrolyte layer is coated on the anode support tube by vacuum assist dip coating technique and co-sintering is applied with a home-made porous sintering apparatus to avoid dimensional anomalies. The effects of the parameters such as the composition of the electrolyte solution, the vacuum pressure and the immersion time on the electrolyte thickness are investigated. It is found that the electrolyte thickness decreases when the immersion time and vacuum pressure are reduced. Moreover, the thickness of the electrolyte is found to be depended on the content of the electrolyte solution. The effect of the pre-sintering temperature on the electrolyte quality is also investigated. The sintering temperatures of 1000 degrees C and 1100 degrees C provide a similar and desired electrolyte microstructure. A peak power density of 140 mW cm(-2) is obtained at 700 degrees C from the final cell. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.ijhydene.2015.12.203
dc.identifier.endpage10043
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.issue23
dc.identifier.scopus2-s2.0-84955508248
dc.identifier.scopusqualityQ1
dc.identifier.startpage10037
dc.identifier.urihttps://dx.doi.org/10.1016/j.ijhydene.2015.12.203
dc.identifier.urihttps://hdl.handle.net/11480/3631
dc.identifier.volume41
dc.identifier.wosWOS:000378359400040
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthor[0-Belirlenecek]
dc.language.isoen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relation.ispartofINTERNATIONAL JOURNAL OF HYDROGEN ENERGY
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMicro tubular solid oxide fuel cell
dc.subjectExtrusion method
dc.subjectDie design
dc.subjectDip coating technique
dc.titleInvestigation of micro-tube solid oxide fuel cell fabrication using extrusion method
dc.typeArticle

Dosyalar