Symmetric polynomials of algebras related with 2 x 2 generic traceless matrices

dc.contributor.authorFindik, Sehmus
dc.contributor.authorKelekci, Osman
dc.date.accessioned2024-11-07T13:32:35Z
dc.date.available2024-11-07T13:32:35Z
dc.date.issued2021
dc.departmentNiğde Ömer Halisdemir Üniversitesi
dc.description.abstractLet X and Y be two generic traceless matrices of size 2 x 2 with entries from a commutative associative polynomial algebra over a field K of characteristic zero. Consider the associative unitary algebra W, and its Lie subalgebra L generated by X and Y over the field K. It is well known that the center C(W) = K[t,u,v] of W is the polynomial algebra generated by the algebraically independent commuting elements t = tr(X-2)I-2, u = tr(Y-2)I-2, v = tr(XY)I-2. We call a polynomial p is an element of W symmetric, if p(X,Y ) = p(Y,X). The set of symmetric polynomials is equal to the algebra W-S2 of invariants of symmetric group S-2. Similarly, we define the Lie algebra L-S2 of symmetric polynomials in the Lie algebra L. We give the description of the algebras W-S2 and L-S2, and we provide finite sets of free generators for W-S2, and [L,L](S2) as K[t + u,tu,v]-modules.
dc.identifier.doi10.1142/S0218196721500521
dc.identifier.endpage1442
dc.identifier.issn0218-1967
dc.identifier.issn1793-6500
dc.identifier.issue7
dc.identifier.scopus2-s2.0-85108980345
dc.identifier.scopusqualityQ2
dc.identifier.startpage1433
dc.identifier.urihttps://doi.org/10.1142/S0218196721500521
dc.identifier.urihttps://hdl.handle.net/11480/15497
dc.identifier.volume31
dc.identifier.wosWOS:000717064200007
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.ispartofInternational Journal of Algebra and Computation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241106
dc.subjectLie algebras
dc.subjectsymmetric polynomials
dc.subjectgeneric matrices
dc.titleSymmetric polynomials of algebras related with 2 x 2 generic traceless matrices
dc.typeArticle

Dosyalar