Discrimination of lipoma from atypical lipomatous tumor/well-differentiated liposarcoma using magnetic resonance imaging radiomics combined with machine learning

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Purpose To evaluate the diagnostic capability of radiomics in distinguishing lipoma and Atypic Lipomatous Tumors/Well-Differentiated Liposarcomas (ALT/WDL) with Magnetic Resonance Imaging (MRI). Materials and methods Patients with a histopathologic diagnosis of lipoma (n = 45) and ALT/WDL (n = 20), who had undergone pre-surgery or pre-biopsy MRI, were enrolled. The MDM2 amplification was accepted as gold-standard test. The T1-weighted turbo spin echo images were used for radiomics analysis. Utility of a predefined standardized imaging protocol and a single type of 1.5 T scanner were sought as inclusion criteria. Radiomics parameters that show a certain level of reproducibility were included in the study and supplied to Support Vector Machine (SVM) as a machine learning method. Results No significant difference was found in terms of gender, location and age between the lipoma and ALT/WDL groups. Sixty-five parameters were accepted as reproducible. Fifty-seven parameters were able to distinguish the two groups significantly (AUC range 0.564-0.902). Diagnostic performance of the SVM was one of the highest among literature findings: sensitivity = 96.8% (95% CI 94.03-98.39%), specificity = 93.72% (95% CI 86.36-97.73%) and AUC = 0.987 (95% CI 0.972-0.999). Conclusion Although radiomics has been proven to be useful in previous literature regarding discrimination of lipomas and ALT/WDLs, we found that its accuracy could further be improved with utility of standardized hardware, imaging protocols and incorporation of machine learning methods.

Açıklama

Anahtar Kelimeler

Atypical lipomatous tumor, Lipoma, Machine learning, MRI, Radiomics, Well-differentiated liposarcoma

Kaynak

Japanese Journal of Radiology

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

40

Sayı

9

Künye