Artificial neural networks for neutron/? discrimination in the neutron detectors of NEDA
dc.authorid | Baulieu, Guillaume/0000-0002-9372-5523 | |
dc.authorid | Nyberg, Johan/0000-0001-6996-7605 | |
dc.authorid | Jaworski, Grzegorz/0000-0003-2241-0329 | |
dc.authorid | Gonzalez Millan, Vicente/0000-0001-6014-2586 | |
dc.contributor.author | Fabian, X. | |
dc.contributor.author | Baulieu, G. | |
dc.contributor.author | Ducroux, L. | |
dc.contributor.author | Stezowski, O. | |
dc.contributor.author | Boujrad, A. | |
dc.contributor.author | Clement, E. | |
dc.contributor.author | Coudert, S. | |
dc.date.accessioned | 2024-11-07T13:35:26Z | |
dc.date.available | 2024-11-07T13:35:26Z | |
dc.date.issued | 2021 | |
dc.department | Niğde Ömer Halisdemir Üniversitesi | |
dc.description.abstract | Three different Artificial Neural Network architectures have been applied to perform neutron/gamma discrimination in NEDA based on waveform and time-of-flight information. Using the coincident gamma-rays from AGATA, we have been able to measure and compare on real data the performances of the Artificial Neural Networks as classifiers. While the general performances are quite similar for the data set we used, differences, in particular related to the computing times, have been highlighted. One of the Artificial Neural Network architecture has also been found more robust to time misalignment of the waveforms. Such a feature is of great interest for online processing of waveforms. | |
dc.description.sponsorship | National Science Centre, Poland (NCN) [2017/25/B/ST2/01569]; STFC [ST/P003885/1, ST/L005727/1] Funding Source: UKRI | |
dc.description.sponsorship | One of the author acknowledges support of the National Science Centre, Poland (NCN) (grant no. 2017/25/B/ST2/01569). | |
dc.identifier.doi | 10.1016/j.nima.2020.164750 | |
dc.identifier.issn | 0168-9002 | |
dc.identifier.issn | 1872-9576 | |
dc.identifier.scopus | 2-s2.0-85092489481 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.nima.2020.164750 | |
dc.identifier.uri | https://hdl.handle.net/11480/16503 | |
dc.identifier.volume | 986 | |
dc.identifier.wos | WOS:000595155500019 | |
dc.identifier.wosquality | Q3 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.ispartof | Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241106 | |
dc.subject | gamma-ray spectroscopy | |
dc.subject | Neutron detector | |
dc.subject | n-gamma discrimination | |
dc.subject | Pulse-shape discrimination | |
dc.subject | Machine learning | |
dc.subject | Artificial neural networks | |
dc.title | Artificial neural networks for neutron/? discrimination in the neutron detectors of NEDA | |
dc.type | Article |