Comparative study of artificial neural network versus parametric method in COVID-19 data analysis

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Since the previous two years, a new coronavirus (COVID-19) has found a major global problem. The speedy pathogen over the globe was followed by a shockingly large number of afflicted people and a gradual increase in the number of deaths. If the survival analysis of active individuals can be predicted, it will help to contain the epidemic significantly in any area. In medical diagnosis, prognosis and survival analysis, neural networks have been found to be as successful as general nonlinear models. In this study, a real application has been developed for estimating the COVID-19 mortality rates in Italy by using two different methods, artificial neural network modeling and maximum likelihood estimation. The predictions obtained from the multilayer artificial neural network model developed with 9 neurons in the hidden layer were compared with the numerical results. The maximum deviation calculated for the artificial neural network model was -0.14% and the R value was 0.99836. The study findings confirmed that the two different statistical models that were developed had high reliability.

Açıklama

Anahtar Kelimeler

Reliability function, Maximum likelihood estimation, Artificial neural network, Failure rate function

Kaynak

Results in Physics

WoS Q Değeri

Q1

Scopus Q Değeri

Q2

Cilt

38

Sayı

Künye