Investigation of the dielectric and optic properties of rosehip seed extract loaded hydrogels
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Rosehip seed (RS) extract-loaded hydrogel samples RS1 (poly(AMPS-co-MBAAm), RS2 (poly(AMPS-co - CrA-co -MBAAm)), RS3 (poly(AMPS -co -MAA -co -MBAAm)) and RS4 (poly(AMPS-co -IA - co-MBAAm)) were prepared to examine their structural and optical properties. Furthermore, frequency and bias voltage evolution of dielectric and electrical parameters were analyzed using impedance spec-troscopy (IS) for all samples at room temperature (RT). Fluctuating and self-consistent results were ob-tained in the Ultraviolet-visible (UV) spectrum of the samples. The conductivity mechanisms were de-termined by calculating the s parameters of all samples for different regions. The complex impedance, capacitance, phase angles, dielectric constant, tangent factor, electric modulus, and frequency variation of ionic conductivity for the rosehip seed loaded hydrogel were successfully analyzed in detail using IS in the broadband frequency range. The increase in ionic conductivity of the RS-doped hydrogel with in-creasing frequency was attributed to its ability to exhibit the Langevin equivalent of Brownian motion in viscoelastic fluids, surface/bulk Maxwellian stress relaxation behavior, and the validity of the Stokes -Einstein relationship in biological fluids. In particular, the capacitive effect observed as a result of the Cole-Cole diagrams of the dielectric constant adapting to Smith Chat and the equivalent RC circuit al-lowed the material to be used as a capacitor. (c) 2022 Elsevier B.V. All rights reserved.
Açıklama
Anahtar Kelimeler
Hydrogels, Rosehip seed (RS) extract, Dielectric properties, Organic conductivity, Electrochemical biosensor, Smith chart
Kaynak
Journal of Molecular Structure
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
1274