Power economic dispatch using a hybrid genetic algorithm

dc.contributor.authorYalcinoz T.
dc.contributor.authorAltun H.
dc.date.accessioned2019-08-01T13:38:39Z
dc.date.available2019-08-01T13:38:39Z
dc.date.issued2001
dc.departmentNiğde ÖHÜ
dc.description.abstractThis letter outlines a hybrid genetic algorithm (HGA) for solving the economic dispatch problem. The algorithm incorporates the solution produced by an improved Hopfield neural network (NN) [1] as a part of its initial population. Elitism, arithmetic crossover, and mutation are used in the GAs to generate successive sets of possible operating policies. The technique improves the quality of the solution and reduces the computation time, and is compared with the classical optimization technique, an improved Hopfield NN approach (IHN) [1], a fuzzy logic controlled GA (FLCGA) [2], and an improved GA (IGA) [3].
dc.identifier.doi10.1109/39.911360
dc.identifier.endpage60
dc.identifier.issn0272-1724
dc.identifier.issue3
dc.identifier.scopus2-s2.0-0035274988
dc.identifier.scopusqualityN/A
dc.identifier.startpage59
dc.identifier.urihttps://dx.doi.org/10.1109/39.911360
dc.identifier.urihttps://hdl.handle.net/11480/1383
dc.identifier.volume21
dc.indekslendigikaynakScopus
dc.institutionauthor[0-Belirlenecek]
dc.language.isoen
dc.relation.ispartofIEEE Power Engineering Review
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectArithmetic crossover
dc.subjectEconomic dispatch
dc.subjectHGA
dc.subjectHopfield neural networks
dc.titlePower economic dispatch using a hybrid genetic algorithm
dc.typeArticle

Dosyalar