Lifetime measurements in the even-even 102-108Cd isotopes

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Amer Physical Soc

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Background: The heaviest T-z = 0 doubly-magic nucleus, Sn-100, and the neighboring nuclei offer unique opportunities to investigate the properties of nuclear interaction. For instance, the structure of light-Sn nuclei has been shown to be affected by the delicate balance between nuclear-interaction components, such as pairing and quadrupole correlations. From Cd to Te, many common features and phenomena have been observed experimentally along the isotopic chains, leading to theoretical studies devoted to a more general and comprehensive study of the region. In this context, having only two proton holes in the Z = 50 shell, the Cd isotopes are expected to present properties similar to those found in the Sn isotopic chain. Purpose: The aim of this work was to measure lifetimes of excited states in neutron-deficient nuclei in the vicinity of Sn-100. Methods: The neutron-deficient nuclei in the N approximate to Z approximate to 50 region were populated using a multinucleon transfer reaction with a Cd-106 beam and a Mo-92 target. The beamlike products were identified by the VAMOS++ spectrometer, while the gamma rays were detected using the AGATA array. Lifetimes of excited states were determined using the recoil distance Doppler-shift method, employing the Cologne differential plunger. Results: Lifetimes of low-lying states were measured in the even-mass Cd-102-(108) isotopes. In particular, multiple states with excitation energy up to MeV, belonging to various bands, were populated in approximate to 3 Cd-106 via inelastic scattering. The transition strengths corresponding to the measured lifetimes were compared with those resulting from state-of-the-art beyond-mean-field calculations using the symmetry-conserving configuration-mixing approach. Conclusions: Despite the similarities in the electromagnetic properties of the low-lying states, there is a fundamental structural difference between the ground-state bands in the Z = 48 and Z = 50 isotopes. The comparison between experimental and theoretical results revealed a rotational character of the Cd nuclei, which have prolate-deformed ground states with beta(2) approximate to 0.2. At this deformation Z = 48 becomes a closed-shell configuration, which is favored with respect to the spherical one.

Açıklama

Anahtar Kelimeler

Quadrupole Correlations, Generalized Seniority, Coulomb-Excitation, Excited-States, Cd, Sn, Te, Transition, Nuclei, Region

Kaynak

Physical Review C

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

104

Sayı

3

Künye