Comparison of Tensorflow Object Detection Networks for Licence Plate Localization
dc.contributor.author | Peker, Murat | |
dc.date.accessioned | 2024-11-07T13:23:53Z | |
dc.date.available | 2024-11-07T13:23:53Z | |
dc.date.issued | 2019 | |
dc.department | Niğde Ömer Halisdemir Üniversitesi | |
dc.description | 1st Global Power, Energy and Communication Conference (IEEE GPECOM) -- JUN 12-15, 2019 -- Nevsehir, TURKEY | |
dc.description.abstract | In this work, the object detection networks of TensorFlow framework are trained and tested for the automatic license plate localization task. Firstly, a new dataset is prepared for Turkish license plates. The images in the dataset are labeled with two classes which are the car and the license plate. Four different object detection networks were configured to run on Google's Colab environment. These network configurations were the Single Shot MultiBox Detector (SSD) using MobileNet features and Resnet50 features, the Faster Region Convolutional Neural Network (Faster R-CNN) using Inception layers for features, and the Region-based Fully Convolutional Networks (R-FCN) with Resnet101 features. These networks were compared to determine the performance of license plate localization. Different types of input images were used to test the algorithms. | |
dc.description.sponsorship | Nevsehir Haci Bektas Veli Univ,IEEE,IEEE Reg 8,IEEE Turkey Sect,IEEE Ind Applicat Soc,IEEE Ind Elect Soc,IEEE Power & Energy Soc,Aalborg Univ,Univ Nova Lisboa,Gazi Univ | |
dc.identifier.endpage | 105 | |
dc.identifier.isbn | 978-1-5386-8086-5 | |
dc.identifier.scopus | 2-s2.0-85070612373 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 101 | |
dc.identifier.uri | https://hdl.handle.net/11480/13772 | |
dc.identifier.wos | WOS:000851517900020 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | IEEE | |
dc.relation.ispartof | 2019 Ieee 1st Global Power, Energy and Communication Conference (Gpecom2019) | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241106 | |
dc.subject | SSD | |
dc.subject | Faster R-CNN | |
dc.subject | R-FCN | |
dc.subject | object detection | |
dc.subject | license plate localization | |
dc.title | Comparison of Tensorflow Object Detection Networks for Licence Plate Localization | |
dc.type | Conference Object |