Discrete event control system design using automation Petri nets and their ladder diagram implementation

Küçük Resim Yok

Tarih

1998

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

SPRINGER LONDON LTD

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

As automated manufacturing systems become more complex, the need for an effective design tool to produce both high-level discrete event control systems (DECS) and low-level implementations becomes more important. Petri nets represent the most effective method for both the design and implementation of DECSs. In this paper automation Petri nets (APN) are introduced to provide a new method for the design and implementation of DECSs. The APN is particularly well suited to multiproduct systems and provides a more effective solution than Grafcet in this context. Since ordinary Petri nets do not deal with sensors and actuators of DECSs, the Petri net concepts are extended, by including actions and sensor readings as formal structures within the APN. Moreover enabling and inhibitor nrcs, which can enable or disable transitions through the use of leading-edge, falling-edge and level of markings, are also introduced. Tn this paper the methodology is explained by considering a fundamental APN structure. The conversion of APNs into the IEC1131-3 ladder diagrams (LD) for implementation on a PLC is also explained by using the token passing logic (TPL) concept Finally, an illustrative example of how APNs can be applied to a discrete manufacturing problem is described in detail.

Açıklama

Anahtar Kelimeler

automated manufacturing systems, discrete event control systems, IEC1131-3 standard, Petri nets, programmable logic controllers, real-time implementation

Kaynak

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

14

Sayı

10

Künye