Design and fabrication of novel interconnectors for solid oxide fuel cells via rubber pad forming

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Rubber pad forming is studied numerically and experimentally to fabricate interconnectors for solid oxide fuel cells (SOFCs) from thin Crofer sheets instead of classical thick ones with machined flow channels. In the theoretical program, the effects of the rib angle, rib width and channel depth on the formability are numerically investigated and optimized as 120 degrees, 0.5 mm and 0.5 mm, respectively. In addition, flow simulations are performed to analyze the flow uniformity in the flow-field for the final geometry and homogenous reactant distributions are observed. In the experimental program, the interconnector with numerically optimized geometry is successfully manufactured by rubber pad forming, trimming, piercing and spot welding processes. This interconnector is used to build a two-cell stack. A similar stack is also constructed with a conventional interconnector for comparison. The performances of these stacks are measured at different operating temperatures. According to the simulation and experimental results, rubber pad forming is found to be a highly effective manufacturing route to fabricate SOFC interconnectors from thin Crofer sheets, providing higher specific and volumetric power density values for SOFC stacks compared to those of conventional stacks with interconnectors having machined flow channels.

Açıklama

Anahtar Kelimeler

forming simulation, interconnector, rubber pad forming, solid oxide fuel cell, stack fabrication, stack performance

Kaynak

International Journal of Energy Research

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

44

Sayı

11

Künye