Yazar "Ali, Muhammad Arif" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Micronutrients status of mango (Mangifera indica) orchards in Multan region, Punjab, Pakistan, and relationship with soil properties(De Gruyter Poland Sp Z O O, 2020) Ahmed, Niaz; Umer, Ayta; Ali, Muhammad Arif; Iqbal, Javed; Mubashir, Muhammad; Grewal, Abdul Ghaffar; Butt, BeenishMango orchards in Pakistan are deficient in soil micronutrients. Multan is one of the prime regions for mango production in Pakistan; therefore, this study was conducted to evaluate the micronutrient status of mango orchards in the Multan region. Soil samples from four different depths (0-30, 30-60, 60-90, and 90-120 cm) and leaf samples were collected from thirteen different locations of Multan. Depth-wise variations in the micronutrient status and the levels of pH, EC, CEC, SOM, and CaCO3 were determined. All data collected from the field and laboratory work of mango orchards under study were analyzed statistically by applying the RCBD design. It was observed that pH and EC e of soil under study were significantly higher in upper depths when compared with lower depths whereas CaCO3 content was contrary to pH and EC as it was observed to be higher from the lower depth of the soil. Moreover, mango leaves from the majority of locations were deficient in total micronutrients due to poorly available micronutrients status of the soil. Thus, there is a serious need to improve the chemical properties of the soil, and the proper dose of micronutrients should be applied every season for sufficient supply throughout the growing cycle of mango in and around the Multan region.Öğe Role of macronutrients in cotton production(Springer Singapore, 2020) Ahmed, Niaz; Ali, Muhammad Arif; Danish, Subhan; Chaudhry, Usman Khalid; Hussain, Sajjad; Hassan, Waseem; Ahmad, FiazSound nutrition plays a key role in enhancing cotton yield. As cotton undergoes vegetative and reproductive growth at the same time, its nutritional requirements are dissimilar, compared to other field crops. Cotton is grown as an annual crop with an indeterminate growth pattern. The vegetative branching provides a potential fruiting place except under abiotic and biotic stresses. Moreover, cotton has a deep root system with low density of roots in the surface layer of soils where availability of nutrients is high. The rooting system makes cotton crop more dependent on the subsoil for nutrition. A continuous supply of nutrients is required to sustain morphogenesis. The rate of both nutrients absorption and dry matter production increases progressively during the seedling, vegetative, and fruiting periods and peaks near the end of the bloom period. Nitrogen, phosphorus, and potassium are required in large quantities and are limited in many soils. The deficiencies of macro-and micronutrients decrease plant growth and development, and consequently seed cotton yield is reduced. The deficiency of phosphorous (P), calcium (Ca), potassium (K), boron (B), magnesium (Mg), and zinc (Zn) affects fruit production in cotton than vegetative growth, while the deficiencies of nitrogen (N), sulfur (S), molybdenum (Mo), and manganese (Mn) affect equally vegetative and reproductive growth of cotton. A bevy of literature concerning the role of macronutrients in growth and development is presented in the following paragraphs. © Springer Nature Singapore Pte Ltd. 2020. All rights reserved.Öğe Salinity tolerance in cotton(Springer Singapore, 2020) Ahmed, Niaz; Chaudhry, Usman Khalid; Ali, Muhammad Arif; Ahmad, Fiaz; Sarfraz, Muhammad; Hussain, SajjadCotton is the chief crop and main pillar of textile industry. Its fiber and seed have significant economic importance. However, salinity interferes with the normal growth functioning and results in halted growth and declined yield of fiber and seed. Salinity effects are more obvious at early growth stages of cotton, limiting final yield. Salt decreases boll formation per plant which ultimately gives decreased fiber yield and poor lint quality. Salinity is a global issue increasing every year due to uncontrolled measures and improper land management. Application of saline irrigation water is adding increments to already existing salts and deteriorating the productive soil. Arid regions are totally dependent upon rain for growth of cotton. Salt problem is more in arid regions due least availability of moisture and water for flushing salts from cotton root zone. Moreover, higher temperature favors excessive evaporation under arid conditions and leaving salt on the upper surface of soil. Salts at the surface soil impede cotton seed germination. In this chapter, we discussed formation of saline soils and their sources which deter cotton growth. Physiological changes, oxidative stress caused due to salinity, role of molecular transporters involved in detoxification and specific gene expression is also illuminated. © Springer Nature Singapore Pte Ltd. 2020. All rights reserved.Öğe Salinity Tolerance in Rice(wiley, 2022) Chaudhry, Usman Khalid; Ahmed, Niaz; Junaid, Muhammad Daniyal; Ali, Muhammad Arif; Saboor, Abdul; Danish, Subhan; Hussain, SajjadRice is the main staple food crop across the globe. Among abiotic stresses, salinity stress is increasing at an alarming rate. It inhibits rice growth and yield as rice is a sensitive crop to salinity. It influences various physiological functioning of the rice, which results in retarded growth and ultimately gives poor yield. In this chapter, we highlighted influence of physiological changes and effect on rice grain in response to salinity stress and their adaptation strategies. Moreover, currently numerous studies have explored the molecular response/changes in rice to cope with salinity stress. In this regard, we explained the abscisic acid and signaling under salinity stress along with the functions of transcription factors. Final part of this chapter covers the importance of modern breeding techniques to screen and develop salt tolerant cultivars within a short period of time as compared to conventional breeding approaches. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022.