Yazar "Altuntop, Enis Selcuk" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A comprehensive review on battery thermal management system for better guidance and operation(Wiley, 2023) Altuntop, Enis Selcuk; Erdemir, Dogan; Kaplan, Yuksel; Ozceyhan, VeyselBatteries are essential to mobilization and electrification as they are used in a wide range of applications, from electric vehicles to small mobile devices. All these devices are powered with AC or DC inside their systems, so they require different battery systems depending on their technical requirements. Batteries show unique characteristics depending on their types, and their needs vary based on their performance, ambient conditions, and so forth. One of the main demands for them is thermal stability. For batteries, thermal stability is not just about safety; it's also about economics, the environment, performance, and system stability. This paper has evaluated over 200 papers and harvested their data to build a collective understanding of battery thermal management systems (BTMSs). These studies are specifically designed to solve different problems. This paper has been prepared to show what these systems are, how they work, what they have been designed for, and under what conditions they should be applied. The BTMSs have been evaluated based on their method, method tools, discharge rate, maximum temperature, temperature difference values, and ambient and inlet temperatures. After evaluating over 200 studies, the results indicate that the passive BTMSs are not useful the cases where the temperature reaches higher values suddenly, especially for system systems that require higher discharge rates. On the other hand, active cooling methods do not manage the temperature difference in the battery cells. However, hybrid cooling methods address both cases admirably by compensating for both of their weaknesses and bringing out their advantages. The general optimum temperature for lithium battery batteries is 55 & DEG;C. Even though there are many other parameters that need to be considered before making a decision for a BTMS design, the best performance for an optimum system seems to be methods 34, 38, and 22 as they are able to provide lower maximum temperature and temperature difference in the cells.Öğe Energy Storage Techniques for Renewables(Springer Science and Business Media Deutschland GmbH, 2022) Erdemir, Dogan; Altuntop, Enis Selcuk; Turgut, Buket; Altuntop, NecdetRenewable energy sources are sources that have unsteady, fluctuating and intermittent availability due to their nature. Those are the main challenge in the effective use of renewables. Energy storage (ES) techniques have a tremendous potential to solve challenges in the use of renewables. The scope of this chapter is to introduce the ES methods in renewable energy applications to readers with practical examples. This chapter, first, briefly answers the questions: what energy storage is, why we need ES, and what the ES methods are. This is followed by introducing the ES methods used in renewable energy applications. Recent developments in the area of ES and their practical applications are discussed. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.Öğe Sustainable and cleaner stone wool production with double density layered manufacturing(Inderscience Enterprises Ltd, 2023) Altuntop, Enis Selcuk; Erdemir, DoganThis paper uses numerical analysis and experimental results to show how density-layered stone wool production can help us save carbon emissions while maintaining the same product quality. This new product can save up to 44% of raw materials, energy, and carbon emissions spent. Making it more common will drop stone wool prices and make energy consumption even smaller. Even though there are many applications for using stone wool, the main product scope is heat insulation for construction. Density layered stone wool will make a game-changer effect.