Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Bangert, Ursel" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Electronic functionalisation of graphene via external doping and dosing
    (TAYLOR & FRANCIS LTD, 2015) Bangert, Ursel; Zan, Recep
    There exist many reports on functionalisation of graphene on a non-spatially resolved scale; this report concentrates on reviewing atomic-scale interactions of functionalising agents, i.e. on the electronic behaviour of single atoms, which are introduced as adatoms or lattice site impurities for the purpose of external doping and dosing to achieve bandgap engineering and electrical contacting of graphene; it also reviews the associated defects. Emphasis is put on visualisation of such interactions by advanced imaging in conjunction with localised spectroscopy techniques. Whereas the existing literature describing the development of such techniques in the application to graphene warrants a review in its own right, here the authors focus on observations, with modelling support, of the interaction phenomena themselves and not on the evaluation of measurements by such techniques. Atomic resolution transmission electron microscopy (TEM) combined with electron energy loss spectroscopy (EELS) in imaging and scanning mode, as well as scanning tunnelling microscopy (STM) are the most frequently applied techniques in aid of revealing topography and defect assisted interactions of graphene with foreign atoms and molecules. Electron-probe based investigations additionally lead to electron beam assisted interactions of foreign species with graphene. The graphene metal interaction observed in a transmission electron microscope is a prevalent example of how reactions occurring between metals and graphene can be emphasised and thereby assessed: metal-mediated etching of graphene has proven to be a common phenomenon after metal dosing, e.g. to fabricate electrical contacts. The review reports furthermore on investigations revealing atomic position, bonding and dynamics of non-metal p- and n-dopants as well as on revealing the functionalisation of graphene via molecular self-assembly, intercalation and nano-sculpting. Literature till the end of 2013/begin of 2014 is reviewed.
  • Küçük Resim Yok
    Öğe
    Electronic Structure Modification of Ion Implanted Graphene: The Spectroscopic Signatures of p- and n-Type Doping
    (AMER CHEMICAL SOC, 2015) Kepaptsoglou, Demie; Hardcastle, Trevor P.; Seabourne, Che R.; Bangert, Ursel; Zan, Recep; Amani, Julian Alexander; Ramasse, Quentin M.
    A combination of scanning transmission electron microscopy, electron energy loss spectroscopy, and ab initio calculations is used to describe the electronic structure modifications incurred by free-standing graphene through two types of single-atom doping. The N K and C K electron energy loss transitions show the presence of pi* bonding states, which are highly localized around the N dopant. In contrast, the B K transition of a single B dopant atom shows an unusual broad asymmetric peak which is the result of delocalized pi* states away from the B dopant. The asymmetry of the B K toward higher energies is attributed to highly localized sigma* antibonding states. These experimental observations are then interpreted as direct fingerprints of the expected p- and n-type behavior of graphene doped in this fashion, through careful comparison with density functional theory calculations.

| Niğde Ömer Halisdemir Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Merkez Yerleşke Bor Yolu 51240, Niğde, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim