Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Danish, Subhan" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Biochar increased photosynthetic and accessory pigments in tomato (Solanum lycopersicum L.) plants by reducing cadmium concentration under various irrigation waters
    (Springer Heidelberg, 2017) Abid, Muhammad; Danish, Subhan; Zafar-ul-Hye, Muhammad; Shaaban, Muhammad; Iqbal, Muhammad Mutahir; Rehim, Abdur; Qayyum, Muhammad Farooq
    Fresh surface water supplies are gradually becoming insufficient in arid and semi-arid regions of the world. Thus, farmers in these areas are being forced to use poor quality sewage water. Irrigating vegetable crops with sewage water having high metal concentration may affect growth and biochemical processes of plants. Biochar (BC) can sorb these metals and may reduce their toxic effects on plants. Thus, a greenhouse experiment was conducted to study the influence of cotton stalks derived biochar (CSDB) at control (0%) and 1%; ground water (GW; 0.01 ppm Cd); cadmium-contaminated water (CCW; 2 ppm Cd); and sewage water (SW; 0.13 ppm Cd) on growth and biochemical processes of tomato (Solanum lycopersicum) plants. On an average, additions of 1% BC significantly (p <= 0.05) enhanced dry weight of roots (36%) and shoots (52%) of plants as compared to without BC application. Biochar (1%) decreased shoot Cd concentration by 33% at SW and 100% at CCW. The Cd uptake was increased by 33% with the BC + CCW treatment. Soil organic matter (SOM) was increased 1.2 times while pH and EC were increased by 5 and 47%, respectively, in 1% BC amended soil. Biochar application alleviated toxic effects of Cd and improved growth as well as productions of photosynthetic and accessory pigments in tomato plants.
  • Küçük Resim Yok
    Öğe
    Role of macronutrients in cotton production
    (Springer Singapore, 2020) Ahmed, Niaz; Ali, Muhammad Arif; Danish, Subhan; Chaudhry, Usman Khalid; Hussain, Sajjad; Hassan, Waseem; Ahmad, Fiaz
    Sound nutrition plays a key role in enhancing cotton yield. As cotton undergoes vegetative and reproductive growth at the same time, its nutritional requirements are dissimilar, compared to other field crops. Cotton is grown as an annual crop with an indeterminate growth pattern. The vegetative branching provides a potential fruiting place except under abiotic and biotic stresses. Moreover, cotton has a deep root system with low density of roots in the surface layer of soils where availability of nutrients is high. The rooting system makes cotton crop more dependent on the subsoil for nutrition. A continuous supply of nutrients is required to sustain morphogenesis. The rate of both nutrients absorption and dry matter production increases progressively during the seedling, vegetative, and fruiting periods and peaks near the end of the bloom period. Nitrogen, phosphorus, and potassium are required in large quantities and are limited in many soils. The deficiencies of macro-and micronutrients decrease plant growth and development, and consequently seed cotton yield is reduced. The deficiency of phosphorous (P), calcium (Ca), potassium (K), boron (B), magnesium (Mg), and zinc (Zn) affects fruit production in cotton than vegetative growth, while the deficiencies of nitrogen (N), sulfur (S), molybdenum (Mo), and manganese (Mn) affect equally vegetative and reproductive growth of cotton. A bevy of literature concerning the role of macronutrients in growth and development is presented in the following paragraphs. © Springer Nature Singapore Pte Ltd. 2020. All rights reserved.
  • Küçük Resim Yok
    Öğe
    Salinity Tolerance in Rice
    (wiley, 2022) Chaudhry, Usman Khalid; Ahmed, Niaz; Junaid, Muhammad Daniyal; Ali, Muhammad Arif; Saboor, Abdul; Danish, Subhan; Hussain, Sajjad
    Rice is the main staple food crop across the globe. Among abiotic stresses, salinity stress is increasing at an alarming rate. It inhibits rice growth and yield as rice is a sensitive crop to salinity. It influences various physiological functioning of the rice, which results in retarded growth and ultimately gives poor yield. In this chapter, we highlighted influence of physiological changes and effect on rice grain in response to salinity stress and their adaptation strategies. Moreover, currently numerous studies have explored the molecular response/changes in rice to cope with salinity stress. In this regard, we explained the abscisic acid and signaling under salinity stress along with the functions of transcription factors. Final part of this chapter covers the importance of modern breeding techniques to screen and develop salt tolerant cultivars within a short period of time as compared to conventional breeding approaches. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022.
  • Küçük Resim Yok
    Öğe
    Unraveling Sorghum Allelopathy in Agriculture: Concepts and Implications
    (Mdpi, 2021) Iftikhar Hussain, M.; Danish, Subhan; Sanchez-Moreiras, Adela M.; Vicente, Oscar; Jabran, Khawar; Chaudhry, Usman Khalid; Branca, Ferdinando
    Allelopathy is an ecological phenomenon that involves the production and release of biomolecules from different crops, cultivated plants, and bacteria or fungi into the soil rhizosphere and impacts other organisms in the vicinity. Sorghum possesses vital allelopathic characteristics due to which it produces and releases different biomolecules from its root hairs, stems, and grains. Several studies have reported that sorghum acts as an allelopathic crop, decreasing the growth and eco-physiological attributes of surrounding plants and weeds growing simultaneously or subsequently in the field. Sorghum allelopathy has been exploited in the context of green manure, crop rotations, cover crops, and intercropping or mulching, whereas plant aqueous extracts or powder might be an alternate method of weed control. A diverse group of allelochemicals, including benzoic acid, p-hydroxybenzoic acid, vanillic acid, ferulic acid, chlorogenic acid, m-coumaric acid, p-coumaric acid, gallic acid, caffeic acid, p-hydroxibenzaldehyde, dhurrin, sorgoleone, m-hydroxybenzoic acid and protocatechuic acid, have been isolated and identified from different plant tissues of sorghum and root exudates. These allelochemicals, especially sorgoleone, have been investigated in terms of their mode(s) of action, specific activity and selectivity, release in the rhizosphere and uptake and translocation in sensitive species. The present review describes the importance of sorghum allelopathy as an ecological tool in managing weeds, highlighting the most recent advances in the allelochemicals present in sorghum, their modes of action, and their fate in the ecosystem. Further research should focus on the evaluation and selection of sorghum cultivars with high allelopathic potential, so that sorghum allelopathy can be better utilized for weed control and yield enhancement.

| Niğde Ömer Halisdemir Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Merkez Yerleşke Bor Yolu 51240, Niğde, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim