Yazar "Demircan, Deniz" seçeneğine göre listele
Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Biocompatible non-leachable antimicrobial polymers with a nonionic hyperbranched backbone and phenolic terminal units(Royal Soc Chemistry, 2022) Arza, Carlos R.; Li, Xiaoya; Ilk, Sedef; Liu, Yang; Demircan, Deniz; Zhang, BaozhongThis work aimed to develop biocompatible non-leachable antimicrobial polymers without ionic structures. A series of nonionic hyperbranched polymers (HBPs) with an isatin-based backbone and phenolic terminal units were synthesized and characterized. The molecular structures and thermal properties of the obtained HBPs were characterized by SEC, NMR, FTIR, TGA and DSC analyses. Disk diffusion assay revealed significant antibacterial activity of the obtained phenolic HBPs against nine different pathogenic bacteria. The presence of a methoxy or long alkyl group close to the phenolic unit enhanced the antibacterial effect against certain Gram positive and negative bacteria. The obtained nonionic HBPs were blended in polyester poly(hexamethylene terephthalate) films, which showed no noticeable leakage after being immersed in water for 5 days. Finally, these HBPs showed no cytotoxicity effect to MG-63 osteoblast-like human cells according to MTT analysis, and negligible hemolytic effect.Öğe Cellulose-Organic Montmorillonite Nanocomposites as Biomacromolecular Quorum-Sensing Inhibitor(Amer Chemical Soc, 2017) Demircan, Deniz; Ilk, Sedef; Zhang, BaozhongThe aim of this study was to develop simple cellulose nanocomposites that can interfere with the quorum sensing (QS)-regulated physiological process of bacteria, which will provide a sustainable and inexpensive solution to the serious challenges caused by bacterial infections in various products like food packaging or biomedical materials. Three cellulose nanocomposites with 1-5 w% octadecylaminemodified montmorillonite (ODA-MMT) were prepared by regeneration of cellulose from ionic liquid solutions in the presence of ODA-MMT suspension. Structural characterization of the nanocomposites showed that the ODA-MMT can be exfoliated or intercalated, depending on the load level of the nanofiller. Thermal gravimetric analysis showed that the incorporation of ODA-MMT nanofiller can improve the thermal stability of the nanocomposites compared with regenerated cellulose. Evaluation of the anti-QS effect against a pigment-producing bacteria C. violaceum CV026 by disc diffusion assay and flask incubation assay revealed that the QS-regulated violacein pigment production was significantly inhibited by the cellulose nanocomposites without interfering the bacterial vitality. Interestingly, the nanocomposite with the lowest load of ODA-MMT exhibited the most significant anti-QS effect, which may be correlated to the exfoliation of nanofillers. To our knowledge, this is the first report on the anti-QS effect of cellulose nanocomposites without the addition of any small molecular agents. Such inexpensive and nontoxic biomaterials will thus have great potential in the development of new cellulosic materials that can effectively prevent the formation of harmful biofilms.Öğe Immobilization of laccase onto a porous nanocomposite: application for textile dye degradation(SCIENTIFIC TECHNICAL RESEARCH COUNCIL TURKEY-TUBITAK, 2016) Ilk, Sedef; Demircan, Deniz; Saglam, Semran; Saglam, Necdet; Rzayev, Zakir M. O.Poly(MA-alt-MVE)-g-PLA/ODA-MMT nanocomposite was prepared by self-catalytic interlamellar graft copolymerization of L-lactic acid (LA) onto poly(maleic anhydride-alt-methyl vinyl ether) copolymer in the presence of octadecyl amine-montmorillonite (ODA-MMT) organoclay. FTIR, H-1 (C-13) NMR, XRD, and SEM-TEM were utilized for characterizing the resultant nanocomposite. Lactase from Trametes versicolor was immobilized onto the prepared nanocomposite by adsorption or covalent coupling. Decolorization of Reactive Red 3 from aqueous solution by laccase immobilized on the nanocomposite was studied in different conditions (pH, temperature, dye concentration, and reaction time) to investigate the decolorization activity with repeated use and storage. The results indicated that more than 77% of the activity of laccase immobilized systems was retained at the end of 10 cycles. The final decolorization capacity of the immobilized laccase was significantly higher (65%) than that of free laccase (33%) in the chosen optimized conditions (pH 5, 20 degrees C, 0.05 mg/mL laccase concentration, and 90 min).Öğe New biobased non-ionic hyperbranched polymers as environmentally friendly antibacterial additives for biopolymers(Royal Soc Chemistry, 2018) Arza, Carlos R.; Ilk, Sedef; Demircan, Deniz; Zhang, BaozhongThe aim of this research was to develop new biobased non-ionic polymeric additives with significant bacterial inhibition and low leaching potential, so that they can be used to produce biopolymer materials for various applications such as biomedical devices, surgical textile, or food packaging. Two new non-ionic hyperbranched polymers (HBPs) were prepared by a facile solvent-free polymerization of an AB2monomer derived from naturally existing molecular building blocks 2-phenylethanol, isatin, and anisole. The molecular structures and thermal properties of the obtained HBPs were characterized by GPC, NMR, FTIR, HRMS, MALDI-TOF, TGA and DSC analyses. Disk diffusion tests revealed that the two obtained HBPs showed more significant antibacterial activity against 9 different food and human pathogenic bacteria, compared with small molecular antibiotics. The maximal antibacterial effect of HBPs was achieved at 2 ae g per disk (or 0.1 mg mL-1), which was significantly lower (similar to 1/15) compared to the linear antibacterial polymer chitosan. Such enhanced antibacterial properties can be attributed to the unique highly branched structures and effectively amplified functionalities of HBPs. Finally, the prepared HBPs were added into natural polymers cellulose and polyhydroxybutyrate (PHB), and the resulting biopolymer films showed no significant leakage after being merged in water for 5 days. This was in sharp contrast to the biopolymer films containing a small model compound, which leaked out significantly under the same conditions. To our knowledge, this is the first report on non-ionic bio-based dendritic macromolecules with significant bacteria inhibition and low leakage.Öğe Nonionic nontoxic antimicrobial polymers: indole-grafted poly(vinyl alcohol) with pendant alkyl or ether groups(Royal Soc Chemistry, 2022) Li, Xiaoya; Ilk, Sedef; Liu, Yang; Raina, Deepak Bushan; Demircan, Deniz; Zhang, BaozhongA series of new nonionic antimicrobial polymers with a biodegradable polyvinyl alcohol (PVA) backbone grafted with indole units and different hydrophobic alkyl or ether groups were synthesized by facile esterification. The chemical structures and thermal properties of the obtained polymers were characterized by GPC, NMR, FTIR, WAXD, TGA and DSC analyses. All these nonionic polymers showed a significant antibacterial effect similar to gentamicin against 9 food and human pathogenic bacteria according to the disk diffusion assay. The presence of alkyl or ether groups in most cases did not significantly affect the antibacterial effect compared to the polymer with unsubstituted indole units (with N-H moieties). The impacts of the OH conversion and molecular weight of the obtained polymers on their antimicrobial and anti-quorum sensing effects were also preliminarily investigated. Finally, the obtained indole-grafted PVAs were subjected to MTT assay using a mammalian cell line and hemolysis investigations, and the results showed excellent biocompatibility, particularly for those with ether substituents.Öğe Synthesis, Enzymatic Degradation, and Polymer-Miscibility Evaluation of Nonionic Antimicrobial Hyperbranched Polyesters with Indole or Isatin Functionalities(Amer Chemical Soc, 2021) Li, Xiaoya; Ilk, Sedef; Linares-Pasten, Javier A.; Liu, Yang; Raina, Deepak Bushan; Demircan, Deniz; Zhang, BaozhongMost macromolecular antimicrobials are ionic and thus lack miscibility/compatibility with nonionic substrate materials. In this context, nonionic hyperbranched polyesters (HBPs) with indole or isatin functionality were rationally designed, synthesized, and characterized. Antimicrobial disk diffusion assay indicated that these HBPs showed significant antibacterial activity against 8 human pathogenic bacteria compared to small molecules with indole or isatin groups. According to DSC measurements, up to 20% indole-based HBP is miscible with biodegradable polyesters (polyhydroxybutyrate or polycaprolactone), which can be attributed to the favorable hydrogen bonding between the N-H moiety of indole and the C=O of polyesters. HBPs with isatin or methylindole were completely immiscible with the same matrices. None of the HBPs leaked out from plastic matrix after being immersed in water for 5 days. The incorporation of indole into HBPs as well as small molecules facilitated their enzymatic degradation with PETase from Ideonella sakaiensis, while isatin had a complex impact. Molecular docking simulations of monomeric molecules with PETase revealed different orientations of the molecules at the active site due to the presence of indole or isatin groups, which could be related to the observed different enzymatic degradation behavior. Finally, biocompatibility analysis with a mammalian cell line showed the negligible cytotoxic effect of the fabricated HBPs.