Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Dokuz, Yeşim" seçeneğine göre listele

Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A Review on Deep Learning Architectures for Speech Recognition
    (2020) Dokuz, Yeşim; Tüfekçi, Zekeriya
    Deep learning is a branch of machine learning that uses several algorithms which tries to model datasets by using deep architectureswith many processing layers. With the popularity and successful applications of deep learning architectures, they are being used inspeech recognition, as well. Researchers utilized these architectures for speech recognition and its applications, such as speechemotion recognition, voice activity detection, and speaker recognition and verification to better model speech inputs with outputs andto reduce error rates of speech recognition systems. Many studies are performed in the literature that use deep learning architecturesfor speech recognition systems. The literature studies show that using deep learning architectures for speech recognition and itsapplications provide benefits for many speech recognition areas and have ability to reduce error rates and provide better performance.In this study, first of all, we explained speech recognition problem and the steps of speech recognition. Then, we analyzed the studiesrelated to deep learning based speech recognition. In particular, deep learning architectures of Deep Neural Networks, ConvolutionalNeural Networks, and Recurrent Neural Networks and hybrid approaches that use these architectures are evaluated and the literaturestudies related to these architectures for speech recognition and the application areas of speech recognition are investigated. As aresult, we observed that RNNs are the most utilized and powerful deep learning architecture among all of the deep learningarchitectures in terms of error rates and speech recognition performance. CNNs are other successful deep learning architectures andhave closer results with RNN in terms of error rates and speech recognition performance. Also, we observed that new deeparchitectures that use either hybrid of DNNs, CNNs, and RNNs or other deep learning architectures are getting attention and haveincreasing performance and could reduce error rates in speech recognition.
  • Küçük Resim Yok
    Öğe
    Deep learning-based long-term prediction of air quality parameters
    (Springer Science and Business Media Deutschland GmbH, 2021) Gökçek, Öznur Begüm; Dokuz, Yeşim; Bozdağ, Aslı
    In this study, PM10, SO2, NO2, NO, and NOX concentration values obtained for 2012–2018 from 7 different locations in Ankara city in Turkey were trained with deep learning systems, and predictions for the future were made. To make future predictions, time-based long short-term memory (LSTM) deep learning model was used. With the help of this model, it was predicted which values the air quality parameters determined in the city of Ankara for 2018 would take, and they were compared with the actual values of the same year. Accordingly, PM10 (R2 = 0.95, RMSE = 7.94), SO2 (R2 = 0.99, RMSE = 0.35), NO (R2 = 0.98, RMSE = 5.03), NO2 (R2 = 0.98, RMSE = 2.32), and NOX (R2 = 0.98, RMSE = 6.86) at almost all locations exhibited quite high performance for LSTM. According to the performance criteria obtained, it can be said that LSTM is useful in predicting air quality parameters and works successfully. © 2021, Saudi Society for Geosciences.
  • Küçük Resim Yok
    Öğe
    HAVA KALİTESİ PARAMETRELERİNİN TAHMİNİ VE MEKANSAL DAĞILIMI İÇİN MAKİNE ÖĞRENMESİ YÖNTEMLERİNİN KULLANILMASI
    (2020) Dokuz, Yeşim; Bozdağ, Aslı; Gökçek, Öznur Begüm
    Hava kirliliği, nüfus ve endüstrileşmenin artması ile birlikte günümüzde küresel boyutta yaşanan sorunlardan biri haline gelmiştir. Bu nedenle hava kirletici parametreler düzenli aralıklarla ölçülmeli ve ölçüm sonuçları değerlendirilerek gerekli tedbirler alınmalıdır. Hava kirliliğinin önlenmesi amacıyla kirletici parametreler bir model kapsamında ele alınması ve tahminsonuçlarının mekânsal olarak değerlendirilmesi gerekmektedir. Son zamanlarda hava kirliliğine yönelik objektif ve daha hassas sonuçların elde edilmesi için yapay zeka teknolojilerine ait makine öğrenmesi algoritmalarından yararlanılarak hava kalitesitahmini ve mekânsal dağılımına ilişkin çalışmalar yapılmaktadır. Bu çalışmada, öncelikli olarak hava kirletici parametrelerin özellikleri, çevreye olan etkileri ve bu parametrelerin tahmin edilmesi ve izlenmesinin gerekliliği açıklanmıştır. Ardından bu parametrelerin değerlendirilmesinde uygulanan makine öğrenmesi yöntemlerinin neler olduğu; hangi parametrelerin kullanıldığı, kullanım amaçları, kısıtlılıkları, elde edilen doğruluk düzeyleri ve arazi kullanım ile ilişkisi açısından incelenerek kullanılan yöntemlere ve çalışma prensiplerine ilişkin detaylı bilgi verilmiştir. Bu çalışma, hava kalitesinin iyileştirilerek sürdürülebilir bir çevrenin elde edilmesinde hangi parametreler hangi yöntem kullanılarak nasıl bir analiz ile incelenmeli sorusuna ilişkin seçim karmaşasının çözümlenmesine yönelik gelecek çalışmalara bir fikir sunmaktadır
  • Küçük Resim Yok
    Öğe
    Investigation of the Effect of LSTM Hyperparameters on Speech Recognition Performance
    (2020) Dokuz, Yeşim; Tüfekçi, Zekeriya
    With the recent advances in hardware technologies and computational methods, computers became more powerful for analyzingdifficult tasks, such as speech recognition and image processing. Speech recognition is the task of extraction of text representation ofa speech signal using computational or analytical methods. Speech recognition is a challenging problem due to variations in accents and languages, powerful hardware requirements, big dataset needs for generating accurate models, and environmental factors thataffect signal quality. Recently, with the increasing processing ability of hardware devices, such as Graphical Processing Units, deeplearning methods became more prevalent and state-of-the-art method for speech recognition, especially Recurrent Neural Networks(RNNs) and Long-Short Term Memory (LSTMs) networks which is a variant of RNNs. In the literature, RNNs and LSTMs are usedfor speech recognition and the applications of speech recognition with various parameters, i.e. number of layers, number of hiddenunits, and batch size. It is not investigated that how the parameter values of the literature are selected and whether these values couldbe used in future studies. In this study, we investigated the effect of LSTMs hyperparameters on speech recognition performance interms of error rates and deep architecture cost. Each parameter is investigated separately while other parameters remain constant andthe effect of each parameter is observed on a speech corpus. Experimental results show that each parameter has its specific values forthe selected number of training instances to provide lower error rates and better speech recognition performance. It is shown in thisstudy that before selecting appropriate values for each LSTM parameters, there should be several experiments performed on thespeech corpus to find the most eligible value for each parameter.
  • Küçük Resim Yok
    Öğe
    PM10 Parametresinin Makine Öğrenmesi Algoritmalari ile Mekânsal Analizi, Kayseri İli Örneği
    (2022) Gökçek, Öznur Begüm; Şaşa, Nuray; Dokuz, Yeşim; Bozdağ, Aslı
    Hava kirliliğinin son yıllarda artışı ile alınacak olan erken önlemler dâhilinde hava kirliliği tahmininin yapılması insan ve çevre sağlığına verilebilecek zararın en aza indirilmesinde önemlidir. Bu çalışmada günlük ortalama hava kirliliği miktarının, önemli bir hava kirletici olan PM10 konsantrasyonu üzerinden tahminlenmesi ve hava kirliliğinin çevresel ve mekânsal modellenmesi amaçlanmıştır. Tahminleme modeli, Orta Anadolu Bölgesinde yer alan Kayseri ilinde bulunan 3 istasyondan alınan 2010-2018 yılları arasında ölçülen PM10 konsantrasyonu verileri kullanılarak makine öğrenmesi algoritmaları (kNN DVR, RF, ANN, Lineer Regresyon) ile eğitilmiştir. Kayseri’deki 3 istasyonun 2010-2018 yılları arasındaki PM10 konsantrasyon değerleri girdi olarak verilmiş ve 2019 yılına ait PM10 konsantrasyon değerleri tahmin edilmiştir. En iyi sonuçlar 3 istasyon için de Destek Vektör Regresyonu algoritması ile elde edilmiş olup Trafik bölgesi için R2:0.85, RMSE:17.57, MAE:10.17; Hürriyet bölgesi için R2:0.73, RMSE:34.91, MAE:24.61 ve OSB bölgesi için R2:0.82, RMSE:41.71, MAE:21.62 olarak tespit edilmiştir. Ayrıca elde edilen tahmini konsantrasyon sonuçlarının mekânsal dağılımı (CBS) ve değişimi de analiz edilmiştir.
  • Küçük Resim Yok
    Öğe
    YouTube trend büyük veri kümelerinden ülkeler arası kalıcı etiketlerin keşfi
    (2023) Dokuz, Yeşim
    YouTube kolay kullanılan arayüzü ve büyük miktarda kullanıcı sayısı ile video paylaşım sosyal medya platformları arasından birinci video paylaşım platformudur. YouTube video veri kümelerinin büyük veri doğasından dolayı bu veri kümelerinin analizi ve bilgi çıkarımı, araştırmacılar ve kurum yöneticilerine YouTube kullanıcılarının sosyal eğilimleri hakkında fikir vermektedir. Ancak, YouTube büyük verilerinin analizi, görüntü ve ses işleme uygulamalarının zorluğu, semantik analiz metotlarını düzensiz YouTube içeriklerine uygulamanın zorluğu ve YouTube video veri kümelerinin büyük veri özelliği nedeniyle zordur. Literatürdeki çalışmalar video tavsiye sistemleri, YouTube yorumlarından semantik analizler ve trend video analizleri üzerine odaklanmaktadır. Bu çalışmada, üç ülkeye ait YouTube trend video büyük verisi (Amerika Birleşik Devletleri, Kanada ve İngiltere) kullanılarak ülkeler arası kalıcı etiketlerin keşfi için yeni bir metot ve algoritma önerilmiştir. Keşfedilen ülkeler arası kalıcı etiketler, bazı YouTube video etiketlerinin küresel olarak kullanıldığı, ancak bazı etiketlerin ise yalnız bir ülkede kullanıldığını göstermektedir.

| Niğde Ömer Halisdemir Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Merkez Yerleşke Bor Yolu 51240, Niğde, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim