Yazar "Garcia Guinea, J." seçeneğine göre listele
Listeleniyor 1 - 11 / 11
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Cathodoluminescence and Raman characteristics of CaSO4:Tm3+, Cu phosphor(ELSEVIER SCIENCE BV, 2015) Ekdal, E.; Garcia Guinea, J.; Kelemen, A.; Ayvacikli, M.; Canimoglu, A.; Jorge, A.; Can, N.The physical characterization and phosphor emission spectra are presented for CaSO4 doped with Tm and Cu. All spectral wavelengths are related to electronic transitions of Tm3+ ions. The powder X-ray diffraction pattern showed that the compound exhibits orthorhombic structure and all reflections were indexed without any other secondary impurity phases. Chemical and structural properties of the samples have been characterized by means of Raman spectroscopy and environmental scanning electron microscope (ESEM) with an attached X-ray energy dispersive system (EDS). Group frequencies concept is essential point to the interpretation of the bands due to the main SO4 vibrational units and these displayed main characteristic intensive Raman bands including typical strong intensity at 1016 cm(-1) that corresponds to v(1)SO(4) vibrational mode. From the spatially-resolved cathodoluminescence (CL) spectrum, main emission bands of Tm3+ centered at 346, 362, and 452 nm, due to the respective transitions of P-3(0) -> H-3(4), D-1(2) -> H-3(6), D-1(2) -> F-3(4) were clearly identified. The study is novel as no such CL-ESEM data are available for this doped compound. (C) 2015 Elsevier B.V. All rights reserved.Öğe Characterisation and luminescence studies of Tm and Na doped magnesium borate phosphors(PERGAMON-ELSEVIER SCIENCE LTD, 2015) Ekdal, E.; Garcia Guinea, J.; Karabulut, Y.; Canimoglu, A.; Harmansah, C.; Jorge, A.; Can, N.In this study, structural and luminescence properties of magnesium borate of the form MgB4O7 doped with Tm and Na were investigated by X-ray diffraction (XRD), Raman spectroscopy and cathodoluminescence (CL). The morphologies of the synthetised compounds exhibit clustered granules and road-like materials. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect is discussed. The CL spectra of undoped MgB4O7 shows a broad band emission centred around 350 nm which is postulated to be produced by self-trapped excitons and some other defects. From the CL emission spectrum, main emission bands centred at 360, 455, 475 nm due to the respective transitions of D-1(2)-> H-3(6),D-1(2)-> F-3(4) and (1)G(4)-> H-3(6) suggest the presence of Tm3+ ion in MgB4O7 lattice site. CL mechanism was proposed to explain the observed phenomena which are valuable in possibility of the developing new luminescent materials for different applications. In addition, the experimental Raman spectrum of doped and undoped MgB4O7 were reported and discussed. (C) 2015 Elsevier Ltd. All rights reserved.Öğe Doping Sm3+ into ZnB2O4 phosphors and their structural and cathodoluminescence properties(ELSEVIER SCIENCE SA, 2018) Kucuk, N.; Bulcar, K.; Dogan, T.; Garcia Guinea, J.; Portakal, Z. G.; Karabulut, Y.; Can, N.In this study, ZnB2O4:xSm(3+) (0.01 <= x <= 0.05 mol) powder phosphors have been synthesized by low temperature chemical synthesis method. The structure and morphological observation of the phosphor samples were systematically monitored by X-ray powder diffraction (XRD) and environmental scanning electron microscope (ESEM) coupled to an energy dispersive X-ray spectrometer (EDS). The all diffraction peaks are well assigned to standard data card (PDF#39-1126). Emission properties of the samples were explored using light emission induced by an electron beam (i.e cathodoluminescence, CL) at room temperature (RT). When excited with electron beam, CL spectral measurements of scrutinized phosphors exhibit orange-red luminescence at 572 nm, 606 nm and 658 nm due to various transition from ground state to H-6(5/2),H-6(7/2) and (4)G(5/2) states, respectively. The transition (4)G(5/2) -> H-6(7/2) located at 606 nm can occur as hypersensitive transition having the selection rule Delta J = +/- 1. The observed peaks are in the region of yellow reddish light of Sm3+. Experimental results verify that the optimum Sm3+ content in terms of intense luminescence for this series of phosphors was 2%. Beyond 2% of Sm3+ ions concentration, luminescence quenching occurs due to an enhanced probability of the energy transfer from one Sm3+ to another that matches in energy via cross-relaxation and dipole-dipole interactions according to Dexter theory. A suitable energy transfer model between two adjacent Sm3+ ions in the ZnB2O4 phosphors was accomplished by the electric dipole-dipole interaction. The critical transfer distance (R-c) for non-radiative energy transfer was found to be 21.52 angstrom at 2 mol % Sm3+ doped ZnB2O4. Additionally, thermoluminescence (TL) glow curves of undoped and Sm activated ZnB2O4 under beta irradiation of 10 Gy are also discussed here. (C) 2018 Elsevier B.V. All rights reserved.Öğe Enhancing the blue luminescence behaviour of the Li co -doped novel phosphor ZnB 2 O 4: Tm 3+(Elsevier Science Sa, 2020) Kucuk, N.; Kaynar, Umit H.; Akca, S.; Alajlani, Y.; Yin, L.; Wang, Y.; Garcia Guinea, J.[Abstract Not Available]Öğe Luminescence studies of zinc borates activated with different concentrations of Ce and La under x-ray and electron excitation(Pergamon-Elsevier Science Ltd, 2017) Kucuk, N.; Ayvacikli, M.; Akca, S.; Yuksel, M.; Garcia Guinea, J.; Karabulut, Y.; Canimoglu, A.Several ZnB2O4 powder samples having dopants concentrations of 0.1, 0.01, 0.04 wt% Ce and La were prepared using the nitric acid method via the starting oxides. Several complementary methods such as powder X-ray diffraction (XRD), thermal analyses environmental scanning electron microscopy (ESEM), Radioluminescence (RL) and Cathodoluminescence (CL) techniques were used. Unique luminescence properties of Ce doped ZnB2O4 powder samples are reported for the first time. A new luminescence bands appearing in red part of the spectrum and having all the characteristics of Ce3+ were obtained from RL results. Changing the Ce and La concentration of 0.01-0.1 wt% leads to an increase in RL and CL intensities of Ce3+ and La3+ ions and also CL emission spectra of ZnB2O4 show gradual shift towards longer wavelength. When we compare the luminescence intensity of the samples it is seen that Ce doped ZnB2O4 has the highest intense whereas La doped ZnB2O4 has the lowest one. However, emission spectra of both Ce and La doped samples kept unchanged.Öğe Preparation and characterization of Yttrium based luminescence phosphors(Elsevier Science Bv, 2017) Muresan, L. E.; Ayvacikli, M.; Garcia Guinea, J.; Canimoglu, A.; Karabulut, Y.; Can, N.Ce doped Yttrium aluminate modified by replacing different molar part of aluminium or gallium (Y(3)Al(5-x)GaxO(12)) and Yttrium silicate phosphors activated with Ce and Tb (Y2SiO5:Ce3+,Tb3+) were synthesized by solid state reaction and a gel combustion method, respectively. X-ray diffraction and Scanning electron microscope (SEM) techniques are used to identify their structures and morphologies. Luminescence characteristics are measured and spectroscopic data confirm that Y2SiO5:Ce3+, Tb3+ phosphors can be effectively excited upon UV excitation light and X-ray irradiation, resulting in intense blue and green emissions, respectively. This energy transfer takes place by means of a non-radiative process inside Ce3+-Tb3+ clusters formed in the host matrix. Tb3+ doped Y2SiO5 yields both blue emission D-5(3) -> F-7(j) (j = 3,4,5,6) and green emission D-5(4) -> F-7(J) (J = 3,4,5,6) of Tb3+. Y(3)Al(5-x)GaxO(12):Ce3+ phosphors exhibit a broad blue emission band originating from allowed 5d-4f transition of the Ce3+ ions under different excitation sources but the broad emission band shifts with increasing of Ga3+ content. This work presents a quantitative understanding of host material's on dopant's luminescence properties and thereby provides an optimization guideline, which is extremely demanding for the development of new luminescent materials. (C) 2017 Elsevier B.V. All rights reserved.Öğe Solid state synthesis of SrAl2O4:Mn2+ co-doped with Nd3+ phosphor and its optical properties(ELSEVIER SCIENCE BV, 2013) Ayvacikli, M.; Kotan, Z.; Ekdal, E.; Karabulut, Y.; Canimoglu, A.; Garcia Guinea, J.; Can, N.The optical properties of alkaline earth aluminates doped with rare earth ions have received much attention in the last years and this is due to. their chemical stability, long-afterglow (LAG) phosphorescence and high quantum efficiency. However, there is a lack of understanding about the nature of the rare earth ion trapping sites and the mechanisms which could activate and improve the emission centers in these materials. Therefore a new phosphor material composition, SrAl2O4:Mn2+, co-doped with Nd3+ was synthesized by a traditional solid-state reaction method. The influence of transition metal and rare earth doping on crystal structure and its luminescence properties have been investigated by using X-ray diffraction (XRD), Raman scattering, Photoluminescence (PL) and Radioluminescence (RL). Analysis of the related diffraction patterns has revealed a major phase characteristic of the monoclinic SrAl2O4 compound. Small amounts of the dopants MnCO3 and Nd2O3 have almost no effect on the crsytalline phase composition. Characteristic absorption bands from Nd3+ 4f-4f transitions in the spectra can be assigned to the transitions from the ground state I-4(9/2) to the excited states. The luminescence of Mn2+ activated SrAl2O4 exhibits a broad green emission band from the synthesized phosphor particles under different excitation sources. This corresponds to the spin-forbidden transition of the d-orbital electron associated with the Mn2+ ion. In photo- and radio-luminescence spectra, Nd3+ 4f-4f transition peaks were observed. The emitted radiations for different luminescence techniques were dominated by 560, 870, 1057 and 1335 nm peaks in the visible and NIR regions as a result of I-4(9/2) -> (4)G(7/2) and F-4(3/2) -> I-4(J) (J=9/2, 11/2 and 13/2) transitions of Nd3+ ions, respectively. Multiple emission lines observed at each of these techniques are due to the crystal field splitting of the ground state of the emitting ions. The nature of the emission lines is discussed. (C) 2013 Elsevier B.V. All rights reserved.Öğe Structural and luminescence effects of Ga co-doping on Ce-doped yttrium aluminate based phosphors(ELSEVIER SCIENCE SA, 2016) Ayvacikli, M.; Canimoglu, A.; Muresan, L. E.; Tudoran, L. Barbu; Garcia Guinea, J.; Karabulut, Y.; Can, N.Herein, we primarily focus on luminescence spectrum measurements of various types of green emitting yttrium aluminate phosphors modified with gallium (Y3Al5-xGaxO12) synthesised by solid state reaction. The luminescent emission of samples depends on sample temperature and excitation radiation such as incident X-ray, electron and laser beam. Here, we measured radioluminescence (RL), cathodoluminescence (CL), photoluminescence (PL) along with XRD in order to clarify relationship between lattice defects and the spectral luminescence emissions. The RL and CL spectra of YAG:Ce exhibit an emission band ranging from 300 to 450 nm related to Y-Al antisite defects. The broad emission band of garnet phosphors is shifted from 526 nm to 498 nm with increasing of Ga3+ content, while full width at half maximum (FWHM) of the band tends to be greater than the width of unmodified YAG: Ce garnet. Deconvolution of the spectrum reveals that three emission bands centred at 139, 234 and 294 degrees C occur in aluminate host garnets. (C) 2016 Elsevier B.V. All rights reserved.Öğe Study of luminescence of Mn-doped CaB4O7 prepared by wet chemical method(ELSEVIER SCIENCE SA, 2016) Oguz, K. F.; Ekdal, E.; Aslani, M. A. A.; Canimoglu, A.; Garcia Guinea, J.; Can, N.; Karali, T.In this study, manganese (Mn) doped Calcium Tetraborate (CaB4O7) samples were prepared by the wet chemical method. Under beta irradiated, CaB4O7:Mn showed thermally stimulated luminescence (TSL) glow peaks at approximately 85 degrees C and 220 degrees C with a heating rate of 5 degrees C/s. Peak shape (PS) and various heating rates (VHR) methods were applied for determining the trap parameters such as order of kinetic (b), activation energy (E) and frequency factor (s). The results indicate that the main dosimetric peak of CaB4O7:Mn follows the second-order kinetic model. The thermal fading ratio of the material is around 15% at the end of one month period of storage. The results of the TL studies carried out on the CaB4O7:Mn dosimeter revealed that it has high sensitivity, which makes it very valuable in various dosimetric applications like space, medical, personal dosimetry and dating. Radioluminescence (RL) of CaB4O7:Mn was also studied. It is shown that the RL spectrum contains a wide band centered at 530 nm assigned to Mn2+ ion emission. A broad band emission feature peaked at 350 nm assigned to the non-bridging oxygen hole center (NBOHC) is also discussed and a model is proposed to explain this broad band feature. (C) 2016 Elsevier B.V. All rights reserved.Öğe Synthesis and influence of ultrasonic treatment on luminescence of Mn incorporated ZnS nanoparticles(Elsevier Science Bv, 2017) Cadis, A. -I.; Muresan, L. E.; Perhaita, I.; Munteanu, V.; Karabulut, Y.; Garcia Guinea, J.; Canimoglu, A.Manganese (Mn) doping of ZnS phosphors was achieved by precipitation method using different ultrasound (US) maturation times. The structural and luminescence properties of the samples were carried out by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), photoluminescence (PL), and cathodoluminescence (CL). The real amount of manganese incorporated in ZnS lattice was calculated based on ICP-OES results. According with XRD patterns, the phase structure of ZnS:Mn samples is cubic. EDS spectra reveal deviations of the Mn dopant concentration from the target composition. Both 300 K PL and CL emission spectra of the Mn doped ZnS phosphors display intense orange emission at 590 and 600 nm, respectively, which is characteristic emission of Mn ion corresponding to a T-4(1) -> (6)A(1) transition. Both PL and CL spectra confirmed manganese is substitutionally incorporated into the ZnS host as Mn2+. However, it is suggested that the origin of broad blue emission around 400 nm appeared in CL is due to the radiative recombination at deep level defect states in the ZnS. The ultrasound treatment at first enhances the luminescent intensity by similar to 3 times in comparison with samples prepared by classical way. This study gives rise to an optimization guideline, which is extremely demanded for the development of new luminescent materials. (C) 2017 Elsevier B.V. All rights reserved.Öğe Tunable luminescence of broadband-excited and narrow line green emitting Y2SiO5:Ce3+, Tb3+ phosphor(ELSEVIER SCIENCE SA, 2016) Muresan, L. E.; Karabulut, Y.; Cadis, A. I.; Perhaita, I.; Canimoglu, A.; Garcia Guinea, J.; Can, N.Cerium and terbium activated white emitting yttrium silicate phosphors (Y-2-x-yCe(x)Tb(y)SiO(5)) having average size between 96 and 123 nm were synthesised by a gel-combustion, and their phase and crystal structures, morphologies and ultraviolet (UV)-visible spectroscopic properties were studied. All rare earth doped yttrium silicate (YSO) phosphors are well crystallized powders containing only monoclinic X2-Y2SiO5 phase. No significant changes in the cell parameters were observed with increasing of Tb amount as ionic radii of Tb3+ (0.923 angstrom) and Y3+ (0.9 angstrom) have almost the same. Under different excitations, YSO:Ce3+ exhibits blue emission due to the 5d-4f transitions of Ce3+ ions. The series of emission states at different wavelengths of YSO:Tb3+ associated to f-f transition of Tb3+ ion were detected from luminescence measurements. The emission observed at 544 nm (green) corresponding to D-5(4) -> F-7(5) of Tb3+ is strongest one. Incorporation of variable amounts of Tb3+ in the YSO host lattice determines the modification of emission colour from blue through light blue and eventually to bluish green. A possible energy transfer mechanism taking place from Ce3+ to Tb3+ was also discussed in terms of excitation and emission spectra. (C) 2015 Elsevier B.V. All rights reserved.