Yazar "Guven, Olgun" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Green and Facile Synthesis of Pullulan-Stabilized Silver and Gold Nanoparticles for the Inhibition of Quorum Sensing(Amer Chemical Soc, 2022) Ghaffarlou, Mohammadreza; Ilk, Sedef; Hammamchi, Hamideh; Kirac, Feyza; Okan, Meltem; Guven, Olgun; Barsbay, MuratPullulan (Pull) decorated with monodisperse Ag and Au nanoparticles (NPs) was synthesized by a simple and green method. Samples were characterized by FTIR, UV-vis, NMR, XRD, TGA, SEM, XPS, DLS, and TEM. SEM images showed highly oriented microforms reported for the first time for Pull, because of the supramolecular self-assembling behavior of Pull chains. Antimicrobial and quorum sensing (QS) inhibition activities were tested against six pathogen bacteria and reporter and biomonitor strain. Pull decorated with NPs, in particular, Ag-modified ones, outperformed pristine Pull. The cell proliferation was tested with an MTT assay. NPs-decorated Pull was studied for the first time as an inhibitory agent against bacterial signal molecules and found to be a good candidate. The promising performance of AgNPs@Pull compared to the commercial antibiotic gentamicin showed that it has great potential as a therapeutic approach to overcome the bacterial resistance that has developed against conventional antibiotics.Öğe Poly(acrylic acid)-b-Poly(vinylamine) Copolymer: Decoration with Silver Nanoparticles, Antibacterial Properties, Quorum Sensing Activity, and Cytotoxicity on Breast Cancer and Fibroblast Cell Lines(Amer Chemical Soc, 2022) Ghaffarlou, Mohammadreza; Sutekin, S. Duygu; Hammamchi, Hamideh; Ilk, Sedef; Guven, Olgun; Barsbay, MuratAn elegant integration of primary amine-bearing segments into the acrylic acid-containing blocks and the subsequent addition of silver nanoparticles (Ag NPs) to this double hydrophilic block copolymer endowed the resulting well-defined self-assembled construct with promising antimicrobial and anti-quorum sensing activity and high cytotoxicity against breast cancer cells. Poly(N- vinylformamide) (PNVF), precursor of amphoteric poly(vinyl amine) (PVAm), was chain-extended from pH-responsive poly(acrylic acid) (PAA) macro-chain transfer agent synthesized via reversible addition-fragmentation chain transfer polymerization by the interchange of xanthates (RAFT/MADIX). PAA-b-PNVF block copolymers with molecular weights in the range of 12500-21800 Da and dispersities between 1.29 and 1.44 were characterized by FTIR, elemental analysis,H- 1 and C-13 nuclear magnetic resonance (NMR) spectroscopy, and size exclusion chromatography (SEC). PAA-b-PVAm copolymer was obtained by hydrolysis of the PNVF block. The decoration of PAA-b-PVAm with monodisperse Ag NPs to yield AgNPs@PAA-b-PVAm proceeded through a simple and green approach by amine-induced reduction of Ag ions in aqueous media. The formation of AgNPs@PAA-b-PVAm was characterized by UV/vis spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). AgNPs@PAA-b-PVAm displayed superior antimicrobial and anti QS activity. The cell proliferation was tested with an MTT assay on L929 and MCF-7 cell lines. Both the AgNP-decorated and the bare copolymer showed significantly higher cytotoxicity on cancer cells compared to healthy ones.