Effects of Cooling Rate and Composition on Mechanical Properties of Directionally Solidified Pb100-x-Sn-x Solders
Küçük Resim Yok
Tarih
2011
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
SPRINGER
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Pb100-x-Sn-x solders (x = 5 wt.%, 10 wt.%, 20 wt.%, 35 wt.%, 50 wt.%, 60 wt.%, 61.9 wt.%, and 95 wt.%) were directionally solidified upward over a wide range of cooling rates (T) over dot (0.016 K s(-1) to 4.0 K s(-1)) by using a Bridgman-type directional solidification furnace. Microstructure parameters (primary dendrite arm spacing, lambda(1), and eutectic spacing, lambda(E)) and mechanical properties (microhardness, HV, and ultimate tensile strength, sigma) of the Pb100-x-Sn-x alloys were measured. The dependences of the microhardness and ultimate tensile strength on the cooling rate, microstructure parameters, and composition were determined. According to experimental results, the microhardness and ultimate tensile strength of the solidified samples increase with increasing cooling rate and Sn content, but decrease with increasing microstructure parameters.
Açıklama
Anahtar Kelimeler
Dendritic growth, eutectic microstructure, microhardness, tensile strength
Kaynak
JOURNAL OF ELECTRONIC MATERIALS
WoS Q Değeri
Q2
Scopus Q Değeri
Q3
Cilt
40
Sayı
9