Rüzgar hızı tahmini için yapay sinir ağı ve adaptif sansürleme tekniği tabanlı yeni yaklaşımların geliştirilmesi
Yükleniyor...
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Niğde Ömer Halisdemir Üniversitesi / Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu tez çalışmasında, çok katmanlı algılayıcı (ÇKA) ve tekrarlayan sinir ağına (TSA) tabanlı yeni kısa vadeli rüzgar hızı tahminciler, veri adaptif sansürleme (VAS) stratejisi ile birleştirilerek önerilmiştir. Burada, çok-adım-ileri tahmin modu dikkate alınarak, ÇKA ve TSA yapıları için tüm eğitim kümelerinden en bilgilendirici giriş/çıkış rüzgar verilerinden oluşan yeni bir eğitim veri kümesini yinelemeli olarak elde edebilen VAS stratejisine dayalı en küçük ortalama kare (EKOK) algoritması (VAS-EKOK) tasarlanmıştır. VAS-EKOK daha az bilgilendirici eğitim verilerini yüksek doğrulukla sansürlememizi sağlamış ve böylece ÇKA ve TSA'nın eğitim maliyetlerini, test süreçlerindeki tahmin başarımlarını etkilemeden azaltmıştır. Gerçek hayattaki büyük ölçekli kısa vadeli rüzgar hızı verileri üzerinde gerçekleştirilen benzetim sonuçları, önerilen bu tahmincilerin belirtilen çekici özelliklerini doğrulamıştır.
In this thesis, novel short-term wind speed predictors based on multilayer perceptron (MLP) and recurrent neural network (RNN) are proposed by combining them with the data-adaptive censoring (DAC) strategy. Taking into account the multi-step ahead prediction mode, we design a DAC strategy based-least mean square (LMS) algorithm (DAC-LMS), which iteratively obtains a new training data set consisting of the most informative input-output wind data from all training set for MLP and RNN structures. This enables us to censor less informative training data with high accuracy and thereby the training costs of the MLP and RNN are reduced without affecting prediction performances in their testing processes. The conducted simulation results on real-life large-scale short-term wind speed data verify the mentioned attractive features of the proposed predictors.
In this thesis, novel short-term wind speed predictors based on multilayer perceptron (MLP) and recurrent neural network (RNN) are proposed by combining them with the data-adaptive censoring (DAC) strategy. Taking into account the multi-step ahead prediction mode, we design a DAC strategy based-least mean square (LMS) algorithm (DAC-LMS), which iteratively obtains a new training data set consisting of the most informative input-output wind data from all training set for MLP and RNN structures. This enables us to censor less informative training data with high accuracy and thereby the training costs of the MLP and RNN are reduced without affecting prediction performances in their testing processes. The conducted simulation results on real-life large-scale short-term wind speed data verify the mentioned attractive features of the proposed predictors.
Açıklama
Anahtar Kelimeler
Rüzgar hızı, Veri-adaptif sansürleme stratejisi, En küçük kare algoritması, Çok katmanlı algılayıcı, Tekrarlayan sinir ağları, Wind speed, Data-adaptive censoring strategy, Least mean square algorithm, Multi-layer perceptron, Recurrent neural networks
Kaynak
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Sarp, A. O. (2021). Rüzgar hızı tahmini için yapay sinir ağı ve adaptif sansürleme tekniği tabanlı yeni yaklaşımların geliştirilmesi. (Yüksek Lisans Tezi) Niğde Ömer Halisdemir Üniversitesi, Fen Bilimleri Enstitüsü, Niğde