Product of arbitrary Fibonacci numbers with distance 1 to Fibonomial coefficient
Küçük Resim Yok
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this paper, we solve completely the Diophantine equation Fn1 Fn2 . . . Fnk ± 1 = [ m t ] F (1) for t = 1 and t = 2 where 2 < n1 < n2 < . . . < nk positive integers and [m t ] F is the Fibonomial coefficient.
In this paper, we solve completely the Diophantine equation Fn1 Fn2 . . . Fnk ± 1 = [ m t ] F (1) for t = 1 and t = 2 where 2 < n1 < n2 < . . . < nk positive integers and [m t ] F is the Fibonomial coefficient.
In this paper, we solve completely the Diophantine equation Fn1 Fn2 . . . Fnk ± 1 = [ m t ] F (1) for t = 1 and t = 2 where 2 < n1 < n2 < . . . < nk positive integers and [m t ] F is the Fibonomial coefficient.
Açıklama
Anahtar Kelimeler
Matematik
Kaynak
Turkish Journal of Mathematics
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
41
Sayı
4