A VARIATION ON STRONGLY LACUNARY WARD CONTINUITY

dc.authorid0000-0001-7344-5826
dc.contributor.authorCakalli, Huseyin
dc.contributor.authorKaplan, Huseyin
dc.date.accessioned2019-08-01T13:38:39Z
dc.date.available2019-08-01T13:38:39Z
dc.date.issued2016
dc.departmentNiğde ÖHÜ
dc.description.abstractIn this paper, the concept of a strongly lacunary delta-quasi-Cauchy sequence is investigated. A real valued function f defined on a subset A of R, the set of real numbers, is called strongly lacunary delta ward continuous on A if it preserves strongly lacunary delta quasi-Cauchy sequences of points in A, i.e. (f(alpha(k))) is a strongly lacunary delta quasi-Cauchy sequence whenever (alpha(k)) is a strongly lacunary delta quasi-Cauchy sequences of points in Lambda, where a sequence (alpha(k)) is called strongly lacunary delta quasi-Cauchy if (Delta(alpha k)) is a strongly lacunary quasi-Cauchy sequence where Delta(2 alpha)k = alpha(k+2)-2 alpha(k+1) + alpha(k) for each positive integer k. It turns out that the set of strongly lacunary delta ward continuous functions is a closed subset of the set of continuous functions.
dc.identifier.endpage20
dc.identifier.issn2217-3412
dc.identifier.issue3
dc.identifier.startpage13
dc.identifier.urihttps://hdl.handle.net/11480/3780
dc.identifier.volume7
dc.identifier.wosWOS:000381995600002
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.institutionauthor[0-Belirlenecek]
dc.language.isoen
dc.publisherUNIV PRISHTINES
dc.relation.ispartofJOURNAL OF MATHEMATICAL ANALYSIS
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectlacunary statistically convergence
dc.subjectstrongly lacunary convergence
dc.subjectquasi-Cauchy sequences
dc.subjectcontinuity
dc.titleA VARIATION ON STRONGLY LACUNARY WARD CONTINUITY
dc.typeArticle

Dosyalar