Yapay Sinir Ağları ile Laktasyon Süt Veriminin Modellenmesi

dc.contributor.authorHande Küçükönder
dc.contributor.authorMustafa Boğa
dc.contributor.authorAykut Burğut
dc.contributor.authorFatih Üçkardeş
dc.date.accessioned2019-08-01T13:38:39Z
dc.date.available2019-08-01T13:38:39Z
dc.date.issued2015
dc.departmentNiğde ÖHÜ
dc.description.abstractÇalışmada, Siyah Alaca ırkı ineklerinin laktasyon sayılarının ve sürelerinin süt verimi üzerindeki etkisi yapay sinir ağı (YSA) yöntemi ile araştırılmıştır. Araştırmada Çukurova bölgesinin Menekşe köyü civarındaki özel işletmeden alınan toplam 142 adet hayvanın süt verim değerlerinden yararlanılmıştır. Yapay sinir ağlarına göre oluşturulan modelde hayvanların laktasyon sayıları ve süreleri giriş verisi, süt verimleri ise çıkış verisi olarak ağa tanıtılmıştır. Modelde yer alan ara katmandaki nöron sayısının 3, aktivasyon fonksiyonun ise hiperbolik tanjant fonksiyonu olmasına karar verilmiştir. Ayrıca modelde öğrenme katsayısı ?momentum katsayısı µ=0.7 alınarak ağın eğitimi 1000 iterasyonda tamamlanmıştır. Modelde kullanılan veri setinin % 70'i eğitim, % 20'si test ve % 10'da ağın geçerlilik sınaması için kullanılmıştır. YSA ile oluşturulan bu modelin başarı performansı değerlendirilirken, hata kareler ortalamasının karekökü (RMSE), ortalama mutlak hata (MAE), ortalama mutlak yüzde hata (MAPE) ve R2 değerleri kullanılmıştır. Analizler sonucunda, yapay sinir ağlarına göre oluşturulan modelin RMSE değerleri 2.775.15, MAE değerleri 2.06-4.04, MAPE değerleri 10.08 - 17.99 aralıklarında elde edilmiştir. YSA ile gerçek sonuçların birbirine olan uyumu ise R2 ile araştırılmış ve bu değer 0.783 olarak bulunmuştur. Sonuç olarak yapay sinir ağı ile oluşturulan bu modelin gerçek değerlere yakınsama durumunun iyi olduğu, süt verimini tahmin etmedeki başarı performansının ise parametre sayısının arttırılmasıyla daha da başarılı sonuçlar verebileceği tespit edilmiştir
dc.description.abstractThe purpose of this study is to investigate the effect of Holstein Friesian cows' lactation number and duration on milk yield through artificial neural network (ANN) method. In the study, the milk yield values of a total of 142 animals obtained from a private farm in the village of Menekse in Cukurova region were utilized. In the model based on artificial neural networks, the parity and duration of lactation of the animals is identified as the input data, milk yield is identified as the output data. The number of neuron in intermediate layer was determined in the model as 3, while the activation function is hyperbolic tangent function. In addition, network training was completed in 1000 iterations by taking the learning coefficient in the model and the momentum coefficient ? = 0.7. The 70% of the data set is used for training in the model, 20% for testing and 10% for ??3.0.0
dc.identifier.endpage27
dc.identifier.issn1301-9597
dc.identifier.issue2
dc.identifier.startpage22
dc.identifier.trdizinid200325
dc.identifier.urihttps://app.trdizin.gov.tr/makale/TWpBd016STFOUT09
dc.identifier.urihttps://hdl.handle.net/11480/3136
dc.identifier.volume56
dc.indekslendigikaynakTR-Dizin
dc.institutionauthor[0-Belirlenecek]
dc.language.isotr
dc.relation.ispartofHayvansal Üretim
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectZiraat
dc.subjectSütçülük ve Hayvan Bilimleri
dc.titleYapay Sinir Ağları ile Laktasyon Süt Veriminin Modellenmesi
dc.title.alternativeModelling of The Lactation Milk Yield Through Artificial Neural Networks
dc.typeArticle

Dosyalar