On repdigits as product of consecutive Lucas numbers

Küçük Resim Yok

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Bulgarian Acad Science

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Let (L-n)(n >= 0 )be the Lucas sequence. D. Marques and A. Togbe [7] showed that if F-n . . . Fn+k-1 is a repdigit with at least two digits, then (k, n) = (1, 10), where (F-n)(>= 0) is the Fibonacci sequence. In this paper, we solve the equation L-n . . . Ln+k-1 = a (10(m) - 1/9) , where 1 <= a <= 9, n, k >= 2 and in are positive integers.

Açıklama

Anahtar Kelimeler

Lucas numbers, Repdigits

Kaynak

Notes on Number Theory and Discrete Mathematics

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

24

Sayı

3

Künye