On repdigits as product of consecutive Lucas numbers
Küçük Resim Yok
Tarih
2018
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Bulgarian Acad Science
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Let (L-n)(n >= 0 )be the Lucas sequence. D. Marques and A. Togbe [7] showed that if F-n . . . Fn+k-1 is a repdigit with at least two digits, then (k, n) = (1, 10), where (F-n)(>= 0) is the Fibonacci sequence. In this paper, we solve the equation L-n . . . Ln+k-1 = a (10(m) - 1/9) , where 1 <= a <= 9, n, k >= 2 and in are positive integers.
Açıklama
Anahtar Kelimeler
Lucas numbers, Repdigits
Kaynak
Notes on Number Theory and Discrete Mathematics
WoS Q Değeri
N/A
Scopus Q Değeri
Cilt
24
Sayı
3