On repdigits as product of consecutive Lucas numbers

dc.contributor.authorIrmak, Nurettin
dc.contributor.authorTogbe, Alain
dc.date.accessioned2024-11-07T13:25:09Z
dc.date.available2024-11-07T13:25:09Z
dc.date.issued2018
dc.departmentNiğde Ömer Halisdemir Üniversitesi
dc.description.abstractLet (L-n)(n >= 0 )be the Lucas sequence. D. Marques and A. Togbe [7] showed that if F-n . . . Fn+k-1 is a repdigit with at least two digits, then (k, n) = (1, 10), where (F-n)(>= 0) is the Fibonacci sequence. In this paper, we solve the equation L-n . . . Ln+k-1 = a (10(m) - 1/9) , where 1 <= a <= 9, n, k >= 2 and in are positive integers.
dc.identifier.doi10.7546/nntdm.2018.24.3.95-102
dc.identifier.endpage102
dc.identifier.issn1310-5132
dc.identifier.issn2367-8275
dc.identifier.issue3
dc.identifier.startpage95
dc.identifier.urihttps://doi.org/10.7546/nntdm.2018.24.3.95-102
dc.identifier.urihttps://hdl.handle.net/11480/14549
dc.identifier.volume24
dc.identifier.wosWOS:000448478500012
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherBulgarian Acad Science
dc.relation.ispartofNotes on Number Theory and Discrete Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241106
dc.subjectLucas numbers
dc.subjectRepdigits
dc.titleOn repdigits as product of consecutive Lucas numbers
dc.typeArticle

Dosyalar