On k-periodic binary recurrences

dc.authoridIRMAK, Nurettin/0000-0003-0409-4342
dc.authoridSzalay, Laszlo/0000-0002-4582-6100
dc.contributor.authorIrmak, Nurettin
dc.contributor.authorSzalay, Laszlo
dc.date.accessioned2024-11-07T13:32:23Z
dc.date.available2024-11-07T13:32:23Z
dc.date.issued2012
dc.departmentNiğde Ömer Halisdemir Üniversitesi
dc.description.abstractWe apply a new approach, namely the fundamental theorem of homogeneous linear recursive sequences, to k-periodic binary recurrences which allows us to determine Binet's formula of the sequence if k is given. The method is illustrated in the cases k = 2 and k = 3 for arbitrary parameters. Thus we generalize and complete the results of Edson-Yayenie, and Yayenie linked to k = 2 hence they gave restrictions either on the coefficients or on the initial values. At the end of the paper we solve completely the constant sequence problem of 2-periodic sequences posed by Yayenie.
dc.identifier.endpage35
dc.identifier.issn1787-5021
dc.identifier.issn1787-6117
dc.identifier.startpage25
dc.identifier.urihttps://hdl.handle.net/11480/15373
dc.identifier.volume40
dc.identifier.wosWOS:000434914300003
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherE K F Liceum Kiado
dc.relation.ispartofAnnales Mathematicae Et Informaticae
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241106
dc.subjectlinear recurrences
dc.subjectk-periodic binary recurrences
dc.titleOn k-periodic binary recurrences
dc.typeArticle

Dosyalar