On k-periodic binary recurrences
dc.authorid | IRMAK, Nurettin/0000-0003-0409-4342 | |
dc.authorid | Szalay, Laszlo/0000-0002-4582-6100 | |
dc.contributor.author | Irmak, Nurettin | |
dc.contributor.author | Szalay, Laszlo | |
dc.date.accessioned | 2024-11-07T13:32:23Z | |
dc.date.available | 2024-11-07T13:32:23Z | |
dc.date.issued | 2012 | |
dc.department | Niğde Ömer Halisdemir Üniversitesi | |
dc.description.abstract | We apply a new approach, namely the fundamental theorem of homogeneous linear recursive sequences, to k-periodic binary recurrences which allows us to determine Binet's formula of the sequence if k is given. The method is illustrated in the cases k = 2 and k = 3 for arbitrary parameters. Thus we generalize and complete the results of Edson-Yayenie, and Yayenie linked to k = 2 hence they gave restrictions either on the coefficients or on the initial values. At the end of the paper we solve completely the constant sequence problem of 2-periodic sequences posed by Yayenie. | |
dc.identifier.endpage | 35 | |
dc.identifier.issn | 1787-5021 | |
dc.identifier.issn | 1787-6117 | |
dc.identifier.startpage | 25 | |
dc.identifier.uri | https://hdl.handle.net/11480/15373 | |
dc.identifier.volume | 40 | |
dc.identifier.wos | WOS:000434914300003 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.language.iso | en | |
dc.publisher | E K F Liceum Kiado | |
dc.relation.ispartof | Annales Mathematicae Et Informaticae | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241106 | |
dc.subject | linear recurrences | |
dc.subject | k-periodic binary recurrences | |
dc.title | On k-periodic binary recurrences | |
dc.type | Article |