Doping Sm3+ into ZnB2O4 phosphors and their structural and cathodoluminescence properties

dc.authorid0000-0002-7278-046X
dc.authorid0000-0002-3827-423X
dc.contributor.authorKucuk, N.
dc.contributor.authorBulcar, K.
dc.contributor.authorDogan, T.
dc.contributor.authorGarcia Guinea, J.
dc.contributor.authorPortakal, Z. G.
dc.contributor.authorKarabulut, Y.
dc.contributor.authorCan, N.
dc.date.accessioned2019-08-01T13:38:39Z
dc.date.available2019-08-01T13:38:39Z
dc.date.issued2018
dc.departmentNiğde ÖHÜ
dc.description.abstractIn this study, ZnB2O4:xSm(3+) (0.01 <= x <= 0.05 mol) powder phosphors have been synthesized by low temperature chemical synthesis method. The structure and morphological observation of the phosphor samples were systematically monitored by X-ray powder diffraction (XRD) and environmental scanning electron microscope (ESEM) coupled to an energy dispersive X-ray spectrometer (EDS). The all diffraction peaks are well assigned to standard data card (PDF#39-1126). Emission properties of the samples were explored using light emission induced by an electron beam (i.e cathodoluminescence, CL) at room temperature (RT). When excited with electron beam, CL spectral measurements of scrutinized phosphors exhibit orange-red luminescence at 572 nm, 606 nm and 658 nm due to various transition from ground state to H-6(5/2),H-6(7/2) and (4)G(5/2) states, respectively. The transition (4)G(5/2) -> H-6(7/2) located at 606 nm can occur as hypersensitive transition having the selection rule Delta J = +/- 1. The observed peaks are in the region of yellow reddish light of Sm3+. Experimental results verify that the optimum Sm3+ content in terms of intense luminescence for this series of phosphors was 2%. Beyond 2% of Sm3+ ions concentration, luminescence quenching occurs due to an enhanced probability of the energy transfer from one Sm3+ to another that matches in energy via cross-relaxation and dipole-dipole interactions according to Dexter theory. A suitable energy transfer model between two adjacent Sm3+ ions in the ZnB2O4 phosphors was accomplished by the electric dipole-dipole interaction. The critical transfer distance (R-c) for non-radiative energy transfer was found to be 21.52 angstrom at 2 mol % Sm3+ doped ZnB2O4. Additionally, thermoluminescence (TL) glow curves of undoped and Sm activated ZnB2O4 under beta irradiation of 10 Gy are also discussed here. (C) 2018 Elsevier B.V. All rights reserved.
dc.description.sponsorshipCommission of Scientific Research Projects of Uludag University [OUAP(F)-2015/31]; Cukurova University, Turkey [FAY-2015-4735, FDK-2017-7905]
dc.description.sponsorshipThis work was supported by the Commission of Scientific Research Projects of Uludag University, Project number OUAP(F)-2015/31 and the Research Fund of the Cukurova University, Turkey (Project Number: FAY-2015-4735 and FDK-2017-7905).
dc.identifier.doi10.1016/j.jallcom.2018.03.153
dc.identifier.endpage251
dc.identifier.issn0925-8388
dc.identifier.issn1873-4669
dc.identifier.scopus2-s2.0-85043772997
dc.identifier.scopusqualityQ1
dc.identifier.startpage245
dc.identifier.urihttps://dx.doi.org/10.1016/j.jallcom.2018.03.153
dc.identifier.urihttps://hdl.handle.net/11480/3475
dc.identifier.volume748
dc.identifier.wosWOS:000429838900032
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthor[0-Belirlenecek]
dc.language.isoen
dc.publisherELSEVIER SCIENCE SA
dc.relation.ispartofJOURNAL OF ALLOYS AND COMPOUNDS
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectZnB2O4:Sm3+
dc.subjectXRD
dc.subjectESEM
dc.subjectCathodoluminescence
dc.subjectThermoluminescence
dc.titleDoping Sm3+ into ZnB2O4 phosphors and their structural and cathodoluminescence properties
dc.typeArticle

Dosyalar