Optimum sizing of hybrid renewable power systems for on-site hydrogen refuelling stations: Case studies from Türkiye and Spain

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

One of the main barriers to the adoption of fuel cell vehicles (FCEVs) is the limited availability of hydrogen refuelling stations (HRSs). The presence of these stations is crucial in facilitating the provision of fuel for FCEVs, which rely on hydrogen as a source of power generation. Renewable energy sources offer significant advantages for hydrogen production at these stations, as they are environmentally friendly and can reduce costs. In this study, it is provided a techno-economic analysis of an on -site hydrogen refuelling station powered by a hybrid renewable energy generation system using HOMER software in Nigde, Turkiye, and Zaragoza, Spain. Three different power system scenarios were evaluated to refuel 24 vehicles per day for each region throughout the year. The results of the analysis showed that the most optimal system architecture for Nigde was with a solar panel power generation system, with a levelized cost of hydrogen (LCOH) of 6.15 $/kg and the net present cost (NPC) of $6,832,393. The most optimal system architecture for Zaragoza was a wind turbine -photovoltaic panel power generation system, with an LCOH of 5.83 $/kg and NPC of $6,499,723. The annual amount of CO2 emissions avoided by using renewable resources in hydrogen production was calculated as 2,673,453 kg for Nigde and 2,366,573 kg for Zaragoza. The study also found that the cost of hydrogen production increases with decreasing the HRS production capacity. The use of renewable energy generation systems for hydrogen production will enable countries to achieve net -zero emission targets and reduce the need to import fossil fuels to meet energy demands in the transportation sector. The present study makes several contributions towards the achievement of the United Nations Sustainable Development Goals (3, 7, 11, and 13) and has the potential to facilitate the rapid adoption of FCEVs.

Açıklama

Anahtar Kelimeler

On-site hydrogen production, Fuel cell electric vehicles (FCEVs), Hydrogen refuelling station, Renewable electricity

Kaynak

International Journal of Hydrogen Energy

WoS Q Değeri

N/A

Scopus Q Değeri

Q1

Cilt

59

Sayı

Künye