Dependence of electrical and thermal conductivity on temperature in directionally solidified Sn-3.5 wt% Ag eutectic alloy

Küçük Resim Yok

Tarih

2011

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

SPRINGER

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Sn-3.5 wt% Ag alloy was directionally solidified upward with a constant growth rate (V = 16.5 mu m/s) and a temperature gradient (G = 3.3 K/mm) in a Bridgman-type growth apparatus. The variations of electrical resistivity (rho) with temperature in the range of 293-476 K for the directionally solidified Sn-3.5 wt% Ag eutectic alloy was measured. The measurements indicate that the electrical resistivity of the directionally solidified Sn-Ag eutectic solder increases with increasing temperature. The variations of thermal conductivity of solid phases versus temperature for the same alloy was determined from the Wiedemann-Franz and Smith-Palmer equations by using the measured values of electrical conductivity. From the graphs of electrical resistivity and thermal conductivity versus temperature, the temperature coefficient of electrical resistivity (alpha (TCR) ) and the temperature coefficient of thermal conductivity (alpha (TCT) ) for the same alloy were obtained. According to experimental results, the electrical and thermal conductivity of Sn-Ag eutectic solder linearly decrease with increasing the temperature. The enthalpy of fusion (Delta H) and the change of specific heat (Delta C (P) ) during the transformation at the studied alloy were determined from heating curve during the transformation from eutectic solid to eutectic liquid by means of differential scanning calorimeter (DSC).

Açıklama

Anahtar Kelimeler

Kaynak

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

22

Sayı

11

Künye