İki-adımlı spin geçişli sistemlerin ısing modeli için denge dışı özellikleri
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Niğde Ömer Halisdemir Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu tezde, spin-crossover olarak bilinen spin geçişinin teorik bir yaklaşımı sunuldu. İki alt örgü için iki Ising benzeri model spin-crossover sistemlerinin statik ve dinamik özelliklerini incelemek için kullanılmıştır. İlk olarak, spin-1 Blume-Capel (BC) modeli olarak bilinen spin-1 Ising-benzeri, bir ve iki adımlı spin-crossover sistemlerinin statik ve dinamik özelliklerini incelemek için kullanılır. BC modeli, alt örgü sisteminde iki durumlu ve tek düzen parametreli sisteme sahip bir modeldir. İkinci olarak, BlumeEmery-Griffiths (BEG) modeli olarak bilinen spin-1 Hamiltonyen, spin-crossover sistemlerinin statik ve dinamik özelliklerini incelemek için de kullanıldı. BEG modeli, alt örgüler sisteminde üç durumlu ve iki düzen parametreli bir modeldir. İki modelde de dış manyetik alan mevcuttur. Spin-crossover sistemlerinin statik özellikleri için öz-uyumlu denklemleri en düşük yaklaşımlı kümesel değişim metodu kullanılarak bu iki sistem için elde edildi. Daha sonra, spin-crossover sistemlerinin denge dışı veya dinamik özellikleri denge dışı istatistiksel mekaniğin Yol İhtimaliyet Metodu kullanılarak incelendi. Sistemin statik ve dinamik öz-uyumlu denklemleri Newton-Raphson ve Runge-Kutta yöntemleri kullanılarak yapılmıştır. Anahtar Sözcükler: Spin-crossover sistemi, High-spin kesri, İki-alt örgü, Spin-1 Blume-Capel, Spin-1 Blume-Emery-Griffiths
In this thesis, a theoretical approach of spin transition known as spin-crossover is presented. Two Ising-like models for two-sublattices have been used to study the static and dynamic properties of spin-crossover systems. First, spin-1 Ising-like known as spin-1 Blume-Capel (BC) model is used to study the static and dynamic properties of one and two-step spin-crossover systems. BC model is a model with two state and one order parameter system on the site of sublattices. Second, spin-1 Hamiltonian known as Blume-Emery-Griffiths (BEG) model is also used to study the static and dynamic properties of spin-crossover systems. BEG model is a model with three states and two order parameters system on the site of sublattices. On the two models, the external magnetic field is present. Self-consistent equations for static properties of spin-crossover systems are obtained for these two models by using the Lowest Approximation of the Cluster Variation Method. Then, the non-equilibrium or dynamic properties of the spin-crossover systems were examined by using the Path Probability Method of non-equilibrium statistical mechanics. Static and dynamic self-consistent equations of the system were performed by using Newton-Raphson and Runge-Kutta methods.
In this thesis, a theoretical approach of spin transition known as spin-crossover is presented. Two Ising-like models for two-sublattices have been used to study the static and dynamic properties of spin-crossover systems. First, spin-1 Ising-like known as spin-1 Blume-Capel (BC) model is used to study the static and dynamic properties of one and two-step spin-crossover systems. BC model is a model with two state and one order parameter system on the site of sublattices. Second, spin-1 Hamiltonian known as Blume-Emery-Griffiths (BEG) model is also used to study the static and dynamic properties of spin-crossover systems. BEG model is a model with three states and two order parameters system on the site of sublattices. On the two models, the external magnetic field is present. Self-consistent equations for static properties of spin-crossover systems are obtained for these two models by using the Lowest Approximation of the Cluster Variation Method. Then, the non-equilibrium or dynamic properties of the spin-crossover systems were examined by using the Path Probability Method of non-equilibrium statistical mechanics. Static and dynamic self-consistent equations of the system were performed by using Newton-Raphson and Runge-Kutta methods.
Açıklama
Bu tezin, veri tabanı üzerinden yayınlanma izni bulunmamaktadır. Yayınlanma izni olmayan tezlerin basılı kopyalarına Üniversite kütüphaneniz aracılığıyla (TÜBESS üzerinden) erişebilirsiniz.
Fen Bilimleri Enstitüsü, Fizik Ana Bilim Dalı
Fen Bilimleri Enstitüsü, Fizik Ana Bilim Dalı
Anahtar Kelimeler
Fizik ve Fizik Mühendisliği, Physics and Physics Engineering