Yazar "Can, N." seçeneğine göre listele
Listeleniyor 1 - 20 / 28
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Cathodoluminescence and Raman characteristics of CaSO4:Tm3+, Cu phosphor(ELSEVIER SCIENCE BV, 2015) Ekdal, E.; Garcia Guinea, J.; Kelemen, A.; Ayvacikli, M.; Canimoglu, A.; Jorge, A.; Can, N.The physical characterization and phosphor emission spectra are presented for CaSO4 doped with Tm and Cu. All spectral wavelengths are related to electronic transitions of Tm3+ ions. The powder X-ray diffraction pattern showed that the compound exhibits orthorhombic structure and all reflections were indexed without any other secondary impurity phases. Chemical and structural properties of the samples have been characterized by means of Raman spectroscopy and environmental scanning electron microscope (ESEM) with an attached X-ray energy dispersive system (EDS). Group frequencies concept is essential point to the interpretation of the bands due to the main SO4 vibrational units and these displayed main characteristic intensive Raman bands including typical strong intensity at 1016 cm(-1) that corresponds to v(1)SO(4) vibrational mode. From the spatially-resolved cathodoluminescence (CL) spectrum, main emission bands of Tm3+ centered at 346, 362, and 452 nm, due to the respective transitions of P-3(0) -> H-3(4), D-1(2) -> H-3(6), D-1(2) -> F-3(4) were clearly identified. The study is novel as no such CL-ESEM data are available for this doped compound. (C) 2015 Elsevier B.V. All rights reserved.Öğe CATHODOLUMINESCENCE RESPONSE FROM RARE EARTH DOPED Bi4Ge3O12(ELSEVIER SCIENCE BV, 2009) Kibar, R.; Cetin, A.; Tuncer, Y.; Uysal, S.; Townsend, P. D.; Canimoglu, A.; Can, N.; Boulon, G; Dujardin, C; Jurdyc, AMRoom and low temperature cathodoluminescence (CL) of rare earth doped Bi4Ge3O12 (BGO) has been recorded. Luminescence signals noted in the wavelength range (300 - 800 nm) include intrinsic broad emission bands and signals related to Eu3+, Nd3+, and Tm3+. CL measurements made on Bi4Ge3O12 (BGO) doped with rare earth ions are reported for the temperature range 40 to 300 K with different CL excitation modulation frequencies. Dopant levels used in the present study are 1.1, 0.4, and 0.3 wt% Nd, 0.4 wt% Tm and 3 ppm Eu. All dopant levels exhibited different CL spectra with evidence for lines due to the rare-earth dopants intra-4f transitions. The temperature dependence of the intensity of the emission band is discussed.Öğe Cathodoluminescence Response From Sanidine Feldspar(TAYLOR & FRANCIS INC, 2013) Karabulut, Y.; Canimoglu, A.; Can, N.In the present study, cathodoluminescence (CL) providing information about surface rather than bulk material reveals blue and red emissions within the sanidine feldspar from the Eifel Mountains, Germany. The emission line occurring in the blue region at about 450nm reflects Al-O--Al structural defects, although distribution maps of the major elements, including Si, Al, and K, do not display a clear correlation with the CL properties of the sanidine feldspar. Dominant emission being in the longer-visible wavelength region (red region) approximate to 730nm is assumed to be caused by Fe3+ activation attributed to Fe3+-Al3+ substitution. Much less is known about the spectral characteristic of the feldspar CL emission, and the application of an older luminescence technique yields encouraging results for the practical application of the feldspar identification.Öğe Catholuminescence properties of rare earth doped CaSnO3 phosphor(PERGAMON-ELSEVIER SCIENCE LTD, 2015) Canimoglu, A.; Garcia-Guinea, J.; Karabulut, Y.; Ayvacikli, M.; Jorge, A.; Can, N.The present study describes cathodoluminescence (CL) properties of CaSnO3 phosphors doped with Eu3+, Tb3+ and Dy3+ synthesized by a solid-state method. X-ray diffraction (XRD) patterns confirm that CaSnO3 sintered at 1200 degrees C exhibits orthorhombic structure. The evidence and rationale for two strong broad emission bands appeared at 360 and 780 nm for undoped CaSnO3 are presented. The CL measurements exhibit that the 4f-4f emissions from D-5(4) -> F-7(5) (490 nm), D-5(4) -> F-7(5) (544 nm), D-5(4) -> F-7(4) (586 nm) and D-5(4) -> F-7(3) (622 nm), assigned to possible transitions of Tb3+ ions are seen. The strongest one, observed at 544 nm, due to its probability of both magnetic and electric transitions make the sample emission green. Emissions at 480, 574, 662 and 755 nm were detected for the CaSnO3:Dy3+ and attributed to the transitions from the F-4(9/2) to various energy levels H-6(15/2), H-6(13/2), H-6(11/2) and H-6(9/2)+F-6(11/12) of Dy3+, respectively. CL spectra of Eu doped CaSnO3 reveal that there is a strong emission peak appeared at 615 am due to the electric dipole transition D-5(0) -> F-7(2) (red). Finally, our results show that the rare earth doped CaSnO3 have remarkable potential for applications as optical materials since it exhibits efficient and sharp emission due to rare earth ions. (C) 2015 Elsevier Ltd. All rights reserved.Öğe Characterisation and luminescence studies of Tm and Na doped magnesium borate phosphors(PERGAMON-ELSEVIER SCIENCE LTD, 2015) Ekdal, E.; Garcia Guinea, J.; Karabulut, Y.; Canimoglu, A.; Harmansah, C.; Jorge, A.; Can, N.In this study, structural and luminescence properties of magnesium borate of the form MgB4O7 doped with Tm and Na were investigated by X-ray diffraction (XRD), Raman spectroscopy and cathodoluminescence (CL). The morphologies of the synthetised compounds exhibit clustered granules and road-like materials. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect is discussed. The CL spectra of undoped MgB4O7 shows a broad band emission centred around 350 nm which is postulated to be produced by self-trapped excitons and some other defects. From the CL emission spectrum, main emission bands centred at 360, 455, 475 nm due to the respective transitions of D-1(2)-> H-3(6),D-1(2)-> F-3(4) and (1)G(4)-> H-3(6) suggest the presence of Tm3+ ion in MgB4O7 lattice site. CL mechanism was proposed to explain the observed phenomena which are valuable in possibility of the developing new luminescent materials for different applications. In addition, the experimental Raman spectrum of doped and undoped MgB4O7 were reported and discussed. (C) 2015 Elsevier Ltd. All rights reserved.Öğe Characterization, room and low temperature photoluminescence of yttrium aluminium borate activated with Sm3+ions(Pergamon-Elsevier Science Ltd, 2023) Madkhli, A. Y.; Kaynar, U. H.; Coban, M. B.; Ayvacikli, M.; Canimoglu, A.; Can, N.In this study, the combustion method assisted by urea that is ideally suited to economic and time saving was used for the synthesizing of reddish orange emitting YAl3(BO3)4 phosphor samples doped with various Sm3+ ions (from 0.01 wt% to 7wt%). A detailed study of the structural and luminescence properties at room/low tem-perature of the synthesized samples was performed. XRD analysis revealed a rhombohedral structure with an R32 space group (155). The particle size was determined by the Scherrer's method to be 48 nm. The visible PL emission spectra upon excitation at 359 nm are recorded and four emission peaks around 564, 599, 646, and 707 nm with transitions 4G5/2 -> 6H5/2, 4G5/2 -> 6H7/2, 4G5/2 -> 6H9/2 and 4G5/2 -> 6H11/2 are observed. Concentration quenching was mainly caused by dipole-dipole interactions between neighbouring trivalent Sm3+ ions. Through the CIE chroma coordinates (0.606, 0.382), the optimized sample (x = 0.03) demonstrates admirable luminous performance. YAl3(BO3)4:Sm3+ can be a good candidate for use as a red component for lighting applications.Öğe Doping Sm3+ into ZnB2O4 phosphors and their structural and cathodoluminescence properties(ELSEVIER SCIENCE SA, 2018) Kucuk, N.; Bulcar, K.; Dogan, T.; Garcia Guinea, J.; Portakal, Z. G.; Karabulut, Y.; Can, N.In this study, ZnB2O4:xSm(3+) (0.01 <= x <= 0.05 mol) powder phosphors have been synthesized by low temperature chemical synthesis method. The structure and morphological observation of the phosphor samples were systematically monitored by X-ray powder diffraction (XRD) and environmental scanning electron microscope (ESEM) coupled to an energy dispersive X-ray spectrometer (EDS). The all diffraction peaks are well assigned to standard data card (PDF#39-1126). Emission properties of the samples were explored using light emission induced by an electron beam (i.e cathodoluminescence, CL) at room temperature (RT). When excited with electron beam, CL spectral measurements of scrutinized phosphors exhibit orange-red luminescence at 572 nm, 606 nm and 658 nm due to various transition from ground state to H-6(5/2),H-6(7/2) and (4)G(5/2) states, respectively. The transition (4)G(5/2) -> H-6(7/2) located at 606 nm can occur as hypersensitive transition having the selection rule Delta J = +/- 1. The observed peaks are in the region of yellow reddish light of Sm3+. Experimental results verify that the optimum Sm3+ content in terms of intense luminescence for this series of phosphors was 2%. Beyond 2% of Sm3+ ions concentration, luminescence quenching occurs due to an enhanced probability of the energy transfer from one Sm3+ to another that matches in energy via cross-relaxation and dipole-dipole interactions according to Dexter theory. A suitable energy transfer model between two adjacent Sm3+ ions in the ZnB2O4 phosphors was accomplished by the electric dipole-dipole interaction. The critical transfer distance (R-c) for non-radiative energy transfer was found to be 21.52 angstrom at 2 mol % Sm3+ doped ZnB2O4. Additionally, thermoluminescence (TL) glow curves of undoped and Sm activated ZnB2O4 under beta irradiation of 10 Gy are also discussed here. (C) 2018 Elsevier B.V. All rights reserved.Öğe Identification of heat responsive genes in cotton(ACAD SCIENCES CZECH REPUBLIC, INST EXPERIMENTAL BOTANY, 2014) Demirel, U.; Gur, A.; Can, N.; Memon, A. R.High summer temperature negatively affects cotton yield, and better understanding of genetic mechanisms of heat stress responses in cotton may facilitate development of new heat tolerant cultivars. We attempted to determine heat responsive genes in cotton using tolerant (Stoneville 453, BA 119) and susceptible (Nazilli 84S) cultivars. Twenty five expressed sequence tags (ESTs) were sequenced and studied for gene homology. Sixteen ESTs were significantly similar to known genes, whereas eight ESTs were similar to not annotated cDNA clones and 1 EST did not show homology to any known gene. Expression of some ESTs was analyzed by quantitative real-time PCR and IAA-ala hydrolase (IAR3), folylpolyglutamate synthase (FPGS3), and two not annotated ESTs (GhHS126 and GhHS128) were consistently up-regulated under both short- and long-term heat stress. Since cotton is considered relatively more heat tolerant than most of the other crops, it can be suggested that these genes and ESTs could play a significant role in heat tolerance. In addition, GhHS126 and GhHS128 might be parts of the new candidate genes for heat tolerance.Öğe Luminescent, Structural, and Thermal Properties of the Unusual "Anatolian" Diaspore (Zultanite) from Turkey(TAYLOR & FRANCIS INC, 2014) Canimoglu, A.; Garcia-Guinea, J.; Correcher, V.; Karabulut, Y.; Tuncer, Y.; Can, N.Results are presented for the cathodoluminescence (CL) probe of an environmental scanning electron microscopy (ESEM) with an energy-dispersive spectrometry analyzer (EDS), thermoluminescence (TL), thermo X-ray diffraction in situ (TXRD), and simultaneous differential thermal analysis and thermogravimetric analysis (DTA/TGA) techniques of gem-quality zultanite samples collected from the Mugla region of southwest Turkey. Micro-Raman measurements were also performed on different zultanite orientations and preheated aliquots to study the spectral phase transition diaspore-corundum also detected by the other thermal techniques in the 450 degrees C-500 degrees C thermal range. The thermal phenomena of TL are synchronous with this dehydroxylation process, involving consecutive breaking-linking bonds of Al-O, Cr-O, Fe-O, Al-OH, Cr-OH, and Fe-OH, including the formation of hydrolyzed ions such , and and redox reactions. Assuming that zultanite oxygen atoms are distributed as a hexagonal close packed layer, the experimental spectrum CL of zultanite is characteristic of the E-2 ->(4)A(2) transitions of substitutional Cr3+ luminescent centers in positions of Al3+ in sixfold coordination.Öğe Optical spectroscopy of the Ce-doped multicomponent garnets(PERGAMON-ELSEVIER SCIENCE LTD, 2016) Canimoglu, A.; Karabulut, Y.; Ayvacikli, M.; Muresan, L. E.; Perhaita, I.; Barbu-Tudoran, L.; Can, N.Here, we report our results referring to the preparation of Ce doped Y2.22MgGa2Al2SiO12, Y1.93MgAl4SiO12 and Y2.22Gd0.75Ga2Al3O12 using solid state reaction at high temperature. Several complementary methods (i.e. powder x-ray diffraction (XRPD), energy dispersive analysis of X-rays (EDX), scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR)) were studied to examine the effects of the synthesis procedure on the morphology and structure. XRD analyses revealed that all compounds include yttrium aluminate phase with garnet structure. Cathodoluminescence (CL), radioluminescence (RL) and photoluminescence (PL) measurements were carried out for clarification of relationship between host lattice defects and the spectral luminescence emissions. Luminescence emission of phosphors is peaked at 530 nm assigned to 5d-4f transitions of the dopant Ce3+ ions with a broad emission band in 400-700 nm range. Under electron irradiation, the emission spectrum of Ce doped (YGd)(3)Ga2Al3O12 is well defined and has a characteristic fairly narrow and sharp emission band peaking at 312 nm and 624 nm corresponding to transition of P-6(7/2) -> S-8(7/2) and (6)G(J) -> P-6(J) (Gd3+), respectively. We suggest some of phosphors might be excellent phototherapy phosphor materials under electron excitation. (C) 2016 Elsevier Ltd. All rights reserved.Öğe Preparation and characterization of Yttrium based luminescence phosphors(Elsevier Science Bv, 2017) Muresan, L. E.; Ayvacikli, M.; Garcia Guinea, J.; Canimoglu, A.; Karabulut, Y.; Can, N.Ce doped Yttrium aluminate modified by replacing different molar part of aluminium or gallium (Y(3)Al(5-x)GaxO(12)) and Yttrium silicate phosphors activated with Ce and Tb (Y2SiO5:Ce3+,Tb3+) were synthesized by solid state reaction and a gel combustion method, respectively. X-ray diffraction and Scanning electron microscope (SEM) techniques are used to identify their structures and morphologies. Luminescence characteristics are measured and spectroscopic data confirm that Y2SiO5:Ce3+, Tb3+ phosphors can be effectively excited upon UV excitation light and X-ray irradiation, resulting in intense blue and green emissions, respectively. This energy transfer takes place by means of a non-radiative process inside Ce3+-Tb3+ clusters formed in the host matrix. Tb3+ doped Y2SiO5 yields both blue emission D-5(3) -> F-7(j) (j = 3,4,5,6) and green emission D-5(4) -> F-7(J) (J = 3,4,5,6) of Tb3+. Y(3)Al(5-x)GaxO(12):Ce3+ phosphors exhibit a broad blue emission band originating from allowed 5d-4f transition of the Ce3+ ions under different excitation sources but the broad emission band shifts with increasing of Ga3+ content. This work presents a quantitative understanding of host material's on dopant's luminescence properties and thereby provides an optimization guideline, which is extremely demanding for the development of new luminescent materials. (C) 2017 Elsevier B.V. All rights reserved.Öğe Radioluminescence and photoluminescence characterization of Eu and Tb doped barium stannate phosphor ceramics(ELSEVIER SCIENCE SA, 2014) Ayvacikli, M.; Canimoglu, A.; Karabulut, Y.; Kotan, Z.; Herval, L. K. S.; de Godoy, M. P. F.; Can, N.In this paper, we report on structural and optical properties of terbium and europium doped barium stannate phosphors (BaSnO3) synthesised by conventional solid state reaction method. We have studied those materials by using X-ray diffraction (XRD), radioluminescence (RL) and photoluminescence (PL) techniques. XRD patterns confirm that the BaSnO3 sintered at 1400 degrees C exhibit orthorhombic structure and that the Tb3+ and Eu3+ substitution of Ba2+ does not change the structure of the BaSnO3 host. The optical emission spectrum is characterized a broad band centered at 897 nm (1.38 eV), with a high-energy tail approximately 750 nm from the host lattice. Other emission signals that are characteristic of the 3 + oxidation state of rare earth elements were generated by Eu and Tb doping. Luminescence measurements show that the series of emission states D-5(4) -> F-7(6), D-5(4) -> F-7(5), D-5(4) -> F-7(4) and D-5(4) -> F-7(3) corresponding to the typical (4)f -> (4)f infra-configuration forbidden transitions of Tb3+ are appeared and the major emission peak at 540 nm is due to D-5(4) -> F-7(5) transitions of Tb3+. On the other hand, the emission spectrum of Eu doped BaSnO3 phosphor exhibits a series of emission bands, which are attributed to the D-5(0) -> F-7(j) (j = 0-4) transitions of Eu3+ ions. The dominant emission of Eu3+ corresponding to the electric dipole transition D-5(0) -> F-7(2) is located at 613 nm. The sharp emission properties exhibited demonstrate that the BaSnO3 is a suitable host for rare-earth ion doped phosphor material. This work clearly confirms the unusual near infrared (NIR) PL discovered by H. Mizoguchi et al. in BaSnO3 at room temperature. (C) 2013 Elsevier B.V. All rights reserved.Öğe Rare Earth Photoluminescence in Bismuth-Germanate Crystals(TAYLOR & FRANCIS INC, 2013) Arslanlar, Y. Tuncer; Kotan, Z.; Kibar, R.; Canimoglu, A.; Can, N.In the present work, the photoluminescence (PL) spectra of bismuth germanate (BGO) doped with trivalent rare earth element (REE) ions with different doping concentrations (0.03wt% Eu, 0.4wt% Tm, and 1.1wt% Nd) are reported in the temperature range from 10 to 300K using different detectors, namely, photomultiplier tube (PMT), InGaAs (IGA), and Si. The luminescence in the NIR region was also measured at room temperature. Two broad emission bands attributed to undoped BGO were found at circa 1350 and 1800nm, respectively. The broad-band emissions are replaced by narrow-band line emissions defined by the trivalent rare earth dopants. The emission spectra from rare earth ion-doped BGO extend from 500 to 2000nm. Rare earth ions act as the dominant recombination centers and define the emission spectra. This is interpreted as resulting from direct charge transfer from intrinsic defect traps to rare earth recombination centers. The temperature-dependent luminescence of BGO doped with 0.4wt% Tm is also presented.Öğe Room and Low Temperature Luminescence Properties of CaSO4:Dy,Tm Codoped with Li(ELSEVIER SCIENCE BV, 2009) Can, N.; Karali, T.; Wang, Y.; Townsend, P. D.; Prokic, M.; Canimoglu, A.; Boulon, G; Dujardin, C; Jurdyc, AMRare earths, especially Dy or Tm doped CaSO4 phosphors are actively studied. They have high sensitivity, a large dynamic range, thermal stability and ease of preparation. Nevertheless, they can be enhanced by inclusion of lithium and this study reports some effects of lithium co-dopant on the TL and radioluminescence (RL) emissions of two TL phosphors. Addition of Li as a co-dopant ion was made either during chemical preparation of the phosphors, or as a binder component mixed with the basic phosphors matrix during the process of pressing and sintering the TLD pellets.Öğe Solid state synthesis of SrAl2O4:Mn2+ co-doped with Nd3+ phosphor and its optical properties(ELSEVIER SCIENCE BV, 2013) Ayvacikli, M.; Kotan, Z.; Ekdal, E.; Karabulut, Y.; Canimoglu, A.; Garcia Guinea, J.; Can, N.The optical properties of alkaline earth aluminates doped with rare earth ions have received much attention in the last years and this is due to. their chemical stability, long-afterglow (LAG) phosphorescence and high quantum efficiency. However, there is a lack of understanding about the nature of the rare earth ion trapping sites and the mechanisms which could activate and improve the emission centers in these materials. Therefore a new phosphor material composition, SrAl2O4:Mn2+, co-doped with Nd3+ was synthesized by a traditional solid-state reaction method. The influence of transition metal and rare earth doping on crystal structure and its luminescence properties have been investigated by using X-ray diffraction (XRD), Raman scattering, Photoluminescence (PL) and Radioluminescence (RL). Analysis of the related diffraction patterns has revealed a major phase characteristic of the monoclinic SrAl2O4 compound. Small amounts of the dopants MnCO3 and Nd2O3 have almost no effect on the crsytalline phase composition. Characteristic absorption bands from Nd3+ 4f-4f transitions in the spectra can be assigned to the transitions from the ground state I-4(9/2) to the excited states. The luminescence of Mn2+ activated SrAl2O4 exhibits a broad green emission band from the synthesized phosphor particles under different excitation sources. This corresponds to the spin-forbidden transition of the d-orbital electron associated with the Mn2+ ion. In photo- and radio-luminescence spectra, Nd3+ 4f-4f transition peaks were observed. The emitted radiations for different luminescence techniques were dominated by 560, 870, 1057 and 1335 nm peaks in the visible and NIR regions as a result of I-4(9/2) -> (4)G(7/2) and F-4(3/2) -> I-4(J) (J=9/2, 11/2 and 13/2) transitions of Nd3+ ions, respectively. Multiple emission lines observed at each of these techniques are due to the crystal field splitting of the ground state of the emitting ions. The nature of the emission lines is discussed. (C) 2013 Elsevier B.V. All rights reserved.Öğe Solid state synthesis, characterization and optical properties of Tb doped SrSnO3 phosphor(ELSEVIER SCIENCE SA, 2013) Kotan, Z.; Ayvacikli, M.; Karabulut, Y.; Garcia-Guinea, J.; Tormo, L.; Canimoglu, A.; Can, N.In the present study, the structural and optical properties of SrSnO3 doped with Tb ions are reported. Novel SrSnO3:Tb3+ phosphors were conventionally synthesized using a solid state reaction process under a mildly reduced atmosphere (5% H-2 and 95% N-2). The crystal structures, morphologies and optical properties of the resultant materials have been characterised by experimental techniques such as X-ray Diffraction (XRD), Raman spectroscopy (RS), Photoluminescence (PL), Radioluminescence (RL) and Cathodoluminescence coupled to an ESEM (ESEM-CL). The new phosphor material has good crystallization without any impurity phases, which matches with the standard JCPDS files (No. 22-1442) from XRD analysis. The PL, RL and CL measurements taken at room temperature showed that the transitions of D-5(4) to F-7(J) (j = 6, 5, 4, 3) corresponding to the typical 4f -> 4f dipole forbidden intra-configurational transitions of Tb3+ are largely independent of the host material. The green emissions of the D-5(4) -> F-7(5) magnetic dipole transition at similar to 540 nm are predominant for three types of luminescence. PL emission spectra recorded in the temperature range from 10 K to 300 K were influenced by temperature. We report anomalies in the PL spectra of SrSnO3:Tb3+ compatible with a structural phase transition at 260 K while simultaneously exciting and cooling the sample. This work clearly confirms the existence of a phase transition discovered by Singh et al. in SrSnO3 at 270 K. (C) 2013 Elsevier B.V. All rights reserved.Öğe Structural and luminescence effects of Ga co-doping on Ce-doped yttrium aluminate based phosphors(ELSEVIER SCIENCE SA, 2016) Ayvacikli, M.; Canimoglu, A.; Muresan, L. E.; Tudoran, L. Barbu; Garcia Guinea, J.; Karabulut, Y.; Can, N.Herein, we primarily focus on luminescence spectrum measurements of various types of green emitting yttrium aluminate phosphors modified with gallium (Y3Al5-xGaxO12) synthesised by solid state reaction. The luminescent emission of samples depends on sample temperature and excitation radiation such as incident X-ray, electron and laser beam. Here, we measured radioluminescence (RL), cathodoluminescence (CL), photoluminescence (PL) along with XRD in order to clarify relationship between lattice defects and the spectral luminescence emissions. The RL and CL spectra of YAG:Ce exhibit an emission band ranging from 300 to 450 nm related to Y-Al antisite defects. The broad emission band of garnet phosphors is shifted from 526 nm to 498 nm with increasing of Ga3+ content, while full width at half maximum (FWHM) of the band tends to be greater than the width of unmodified YAG: Ce garnet. Deconvolution of the spectrum reveals that three emission bands centred at 139, 234 and 294 degrees C occur in aluminate host garnets. (C) 2016 Elsevier B.V. All rights reserved.Öğe Structural and spectroscopic properties of LaAlBO3 doped with Eu3+ ions(Pergamon-Elsevier Science Ltd, 2019) Halefoglu, Yusuf Ziya; Oglakci, M.; Yuksel, M.; Canimoglu, A.; Topaksu, M.; Can, N.In this study, we performed X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) techniques to examine the structure and morphological observation of the samples and thermoluminescence (TL) experiments to extract the trapping parameters and dosimetric properties of LaAlBO3 phosphors doped with Eu at various doping concentrations. Diffraction patterns of obtained sample were well consistent JCPDS card No 98-009-7945, indicating the formation of pure phase. The TL kinetic parameters were estimated by CGCD software. TL glow curves of LaAlBO3:Eu3+ consist of 12 trap levels and exhibited dominantly first order kinetics. Photoluminescence (PL) emission was observed in the range 400-800 nm for LaAlBO3 phosphor doped with Eu3+. The dominant emission of Eu3+ corresponding to the electric dipole transition D-5(0) -> F-7(2) is located at 616 nm. The sharp emission properties exhibited demonstrate that the LaAlBO3 is a suitable host for rare-earth ion doped phosphor material. It is observed that for the variable concentration of Eu3+ on PL studies, the PL intensity augments with increase in the dopant concentration and the concentration quenching was found after 1 mass% of Eu3+. The PL experimental results reveal that LaAlBO3:Eu3+ phosphor as an red emitting phosphor may be promising luminescence materials for the optoelectronic applications.Öğe Study of luminescence of Mn-doped CaB4O7 prepared by wet chemical method(ELSEVIER SCIENCE SA, 2016) Oguz, K. F.; Ekdal, E.; Aslani, M. A. A.; Canimoglu, A.; Garcia Guinea, J.; Can, N.; Karali, T.In this study, manganese (Mn) doped Calcium Tetraborate (CaB4O7) samples were prepared by the wet chemical method. Under beta irradiated, CaB4O7:Mn showed thermally stimulated luminescence (TSL) glow peaks at approximately 85 degrees C and 220 degrees C with a heating rate of 5 degrees C/s. Peak shape (PS) and various heating rates (VHR) methods were applied for determining the trap parameters such as order of kinetic (b), activation energy (E) and frequency factor (s). The results indicate that the main dosimetric peak of CaB4O7:Mn follows the second-order kinetic model. The thermal fading ratio of the material is around 15% at the end of one month period of storage. The results of the TL studies carried out on the CaB4O7:Mn dosimeter revealed that it has high sensitivity, which makes it very valuable in various dosimetric applications like space, medical, personal dosimetry and dating. Radioluminescence (RL) of CaB4O7:Mn was also studied. It is shown that the RL spectrum contains a wide band centered at 530 nm assigned to Mn2+ ion emission. A broad band emission feature peaked at 350 nm assigned to the non-bridging oxygen hole center (NBOHC) is also discussed and a model is proposed to explain this broad band feature. (C) 2016 Elsevier B.V. All rights reserved.Öğe Synthesis and enhanced photoluminescence of the BaSiF6:Dy3+ phosphors by Li+ doping via combustion method(Elsevier, 2022) Souadi, G.; Kaynar, U. H.; Ayvacikli, M.; Canimoglu, A.; Can, N.Undoped BaSiF6, Dy3+ doped BaSiF6, and Dy3+, Li+ co-doped BaSiF6 phosphors were synthesized through a gelcombustion method. The prepared samples were characterized by powder x-ray diffraction (XRD), Fourier transform infrared (FTIR), energy dispersive x-ray spectroscopy (EDS), and photoluminescence (PL) techniques. The XRD data revealed that both the Dy3+ doped and Li+ co-doped BaSiF6 phosphors exhibited a single-phase structure belonging to the space group R (3m) over bar which matched well with the standard JCPDS files (No. 002-6613). FTIR spectra showed absorption bands at 3417 cm -1 , 1640 cm(-1), and 1620 cm(-1) corresponding to water molecules. EDS analysis confirmed the chemical composition of the prepared samples. The PL emission spectra of BaSiF6:Dy3+ by different co-doping concentrations of Li+ exhibited prominent emission peaks at 490 nm, 572 nm, 672 nm and 758 nm. The incorporation of Li+ is beneficial for enhancing the photoluminescence intensity. The optimum Li+ amount was 8% for BaSiF6:Dy3+ and then started to decrease. The enhancement could be due to the occurrence of oxygen vacancies due to the incorporation of Li+ ions. The x = 0.301 and y = 0.361 coordinates of this phosphor with varying Li+ dopant concentration determined by the Commission Internationale de l'Eclairage (CIE - 1931) were in the white range. The present work demonstrates how a simple and effective method can be used to prepare novel nanophosphors for applications in the field of visible light emitting devices with enhanced white emission.