Lineer olmayan sistemlerin gürbüz asimptotik kararlılığının Ehlich ve Zeller yöntemiyle belirlenmesi
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Niğde Ömer Halisdemir Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu yüksek lisans tezinde, karalılık bölgelerinin belirlenmesinde, ikinci derece Lyapunov fonksiyonları ile birlikte Ehlich ve Zeller'in geliştirdiği yöntem kullanılmıştır. Bu yöntem aslında, kararlı denge noktaları etrafında asimptotik kararlılık bölgesi olarak kabul edilen bölgeleri karakterize eden gerek ve yeter koşulları sağlar. Bu teknik, bu yüksek lisans çalışmasında polinom yapısındaki lineer olmayan sistemlere uygulanmıştır. Çalışmada, ikinci derece Lyapunov fonksiyonlarından yararlanan ve Ehlich ve Zeller'in önerdiği yöntemle elde edilen gerek ve yeter koşulları kullanan sayısal bir yaklaşım önerilmiştir. Bu yaklaşımla x^*= 0 denge noktası etrafındaki maksimum karalılık bölgesi elde edilmeye çalışılmıştır. Bu amaçla olabildiğince çok sayıda ikinci derece Lyapunov fonksiyonu kullanılmıştır. Maksimum kararlılık bölgesini bulmak için her bir Lyapunov fonksiyonundan elde edilen kararlılık bölgelerinin birleşimi alınmıştır. Önerilen yöntem, polinom yapısındaki lineer olmayan sistemler için bir çeşit optimizasyon problemi tanımlama ve onun nümerik çözümünü içerir. Bu yaklaşımın başlıca özelliği, seçilen ikinci derece bir Lyapunov fonksiyonu için elde edilebilecek maksimum kararlılık bölgesinin bulunabilmesidir.
In this master's thesis, the method developed by Ehlich and Zeller, along with second-degree Lyapunov functions, was utilized to determine stability regions. This method actually satisfies necessary and sufficient conditions characterizing the regions considered as asymptotically stable regions around stable equilibrium points. This technique has been applied to nonlinear systems with polynomial structures in this master's study. In the study, a numerical approach utilizing second-degree Lyapunov functions and the necessary and sufficient conditions obtained with the method proposed by Ehlich and Zeller has been suggested. With this approach, an attempt has been made to obtain the maximum stability region around the equilibrium point x^*= 0. To achieve this, as many second-degree Lyapunov functions as possible have been utilized. To find the maximum stability region, the union of stability regions obtained from each Lyapunov function has been taken. The proposed method defines a kind of optimization problem for nonlinear systems with polynomial structures and involves its numerical solution. The main feature of this approach is the ability to find the maximum stability region achievable for the selected second-degree Lyapunov function.
In this master's thesis, the method developed by Ehlich and Zeller, along with second-degree Lyapunov functions, was utilized to determine stability regions. This method actually satisfies necessary and sufficient conditions characterizing the regions considered as asymptotically stable regions around stable equilibrium points. This technique has been applied to nonlinear systems with polynomial structures in this master's study. In the study, a numerical approach utilizing second-degree Lyapunov functions and the necessary and sufficient conditions obtained with the method proposed by Ehlich and Zeller has been suggested. With this approach, an attempt has been made to obtain the maximum stability region around the equilibrium point x^*= 0. To achieve this, as many second-degree Lyapunov functions as possible have been utilized. To find the maximum stability region, the union of stability regions obtained from each Lyapunov function has been taken. The proposed method defines a kind of optimization problem for nonlinear systems with polynomial structures and involves its numerical solution. The main feature of this approach is the ability to find the maximum stability region achievable for the selected second-degree Lyapunov function.
Açıklama
Fen Bilimleri Enstitüsü, Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı
Anahtar Kelimeler
Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering