Bir imalat hücresinin işleme parametrelerinin yapay sinir ağları ile tahmini

dc.contributor.advisorKacar, İlyas
dc.contributor.authorArslan, Mert
dc.date.accessioned2021-12-21T11:34:52Z
dc.date.available2021-12-21T11:34:52Z
dc.date.issued2021
dc.date.submitted2021-10
dc.departmentNiğde ÖHÜ, Fen Bilimleri Enstitüsü, Makine Mühendisliği Ana Bilim Dalı
dc.description.abstractÜretim sektöründe firmaların rekabet edebilmesi ve sürdürebilirliği sağlaması için imalat esnasında en az kaynağı kullanarak birim hacim başına minimum işleme süresini sağlamaları ve yüzey pürüzlülük değerini en aza indirmeleri gerekmektedir. Bu doğrultuda tornalama için kesme parametrelerinin optimize edilmesi, işleme sürelerinin düşürülmesi ve yüzey kalitesinin artırılması için son derece önemli hale gelmektedir. Bu çalışmada ıslah çeliği olan 41Cr4 (AISI/SAE 5140) malzemesinden üretilen mafsal iş parçasının farklı kesme parametrelerinde işlemeleri yapılarak yüzey pürüzlülük değerleri ve işleme süreleri tespit edilmiştir. Bu veriler yapay sinir ağları ve Edgeworth-Pareto yöntemiyle kullanılarak tornalama işlemi için kesme parametrelerinin optimizasyonu sağlanmıştır. Sonuçta da yüzey pürüzlülük değerinin en iyi olabilmesi ve işleme maliyetiyle birlikte işleme için harcanan gücün de en optimum olabilmesi için gereken kesme parametreleri tespit edilmiştir.
dc.description.abstractIn the manufacturing industry, companies should provide the minimum processing time per unit volume and minimize the surface roughness value spending minimum sources in order to ensure their sustainability and competitiveness. Accordingly, it becomes extremely important to optimize cutting parameters for turning, to reduce machining times and to increase surface quality. In this study, surface roughness values and processing times were determined for the ball joint work piece made from 41Cr4 (AISI / SAE 5140) under various cutting conditions. By using these data in the artificial neural networks and Edgeworth-Pareto method, the cutting parameters were optimized for the turning operation. As a result, the cutting parameters providing the best surface roughness and the optimum power consumption and the machining cost were determined.
dc.identifier.citationArslan, M. (2021). Bir imalat hücresinin işleme parametrelerinin yapay sinir ağları ile tahmini. (Yüksek Lisans Tezi) Niğde Ömer Halisdemir Üniversitesi, Fen Bilimleri Enstitüsü, Niğde
dc.identifier.urihttps://hdl.handle.net/11480/8560
dc.identifier.yoktezid695373
dc.language.isotr
dc.publisherNiğde Ömer Halisdemir Üniversitesi / Fen Bilimleri Enstitüsü
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectKesme parametreleri
dc.subjectTornalama
dc.subjectYapay sinir ağı
dc.subjectEdgeworth-pareto
dc.subjectYüzey pürüzlülüğü
dc.subjectCutting parameters
dc.subjectTurning
dc.subjectArtificial neural network
dc.subjectEdgeworth-pareto
dc.subjectSurface roughness
dc.titleBir imalat hücresinin işleme parametrelerinin yapay sinir ağları ile tahmini
dc.title.alternativePrediction of processing parameters of a manufacturing cell by artificial neural networks
dc.typeMaster Thesis

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Bir imalat hücresinin işleme parametrelerinin yapay sinir ağları ile tahmini.pdf
Boyut:
2.18 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: