Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
İnsan yaşamını önceleyen sistemlerin yaygınlaşması toplumlara bütüncül fayda sağlamaktadır. Solunum yoluyla bulaşıcı hastalıklardan sakınmak için ağız-burun maskesi takmanın Covid-19 pandemisi ile zorunlu hâle geldiği gibi yapı inşaatında çalışan işçilerin inşaat alanında kafa kaskı takması zorunludur. İnşat alanlarında çalışan işçilerin kaskını takıp takmadığının kontrolünü göz ile yapmak yorucu ve hataya açıktır. Yapay zekâ tabanlı bilgisayar teknolojilerinin geliştiği bu çağda hayatımızı her anlamda kolaylaştıran sistemlerin varlığı ümit vaat etmektedir. Bu çalışmada görüntü verisinin anlamlandığı evrişimli sinir ağı (ESA) tabanlı derin öğrenme ile kask takma kontrolünün otomatik yapılması önerilmiştir ve YOLO V4, V5 ve Faster R-CNN modellerine uygulanan transfer öğrenme tekniği ile kısıtlı veri seti probleminin üstesinden gelinmiştir. Deneylerde transfer öğrenme uygulanmayan eğitimlere de yer verilerek yöntemin etkinliği incelenmiştir. Sonuçta transfer öğrenmeli YOLO V5 modelinin %98 f1 skor ile 6 farklı model eğitimi arasında en başarılı olduğu gözlemlenmiştir.
Açıklama
Anahtar Kelimeler
Bilgisayar Bilimleri, Yazılım Mühendisliği, Görüntüleme Bilimi ve Fotoğraf Teknolojisi, Bilgisayar Bilimleri, Donanım ve Mimari, Bilgisayar Bilimleri, Teori ve Metotlar, Bilgisayar Bilimleri, Yapay Zeka, Transfer öğrenme, Yapay zekâ, Derin öğrenme, ESA, Kask tespiti
Kaynak
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
12
Sayı
1