Fabrication of CZTS thin film on flexible Cu-foil substrate by two-stage process
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this research, CZTS thin films were grown on flexible Cu-foil substrates with varying sulfurization times. Distinct characterization methods were employed, including X-ray diffraction (XRD), Raman spectroscopy, Energy-Dispersive X-ray Spectroscopy (EDX), Scanning Electron Microscopy (SEM), optical transmission, and Photoluminescence (PL) measurements. Distinctive diffraction peaks characteristic of the kesterite CZTS phase were observed in the XRD analysis, occurring around at 2?= 28.45° (112), 47° (220/204), and 56° (312/116). Additionally, some secondary phases such as Cu2S and SnS were identified. Raman spectroscopy confirmed the presence of the kesterite CZTS phase, with a prominent peak detected at approximately ~336 cm-1, attributed to sulfur atom vibrations within the kesterite structure. Apart from CZTS structure, minor peaks suggesting the presence of the Cu2SnS3 (CTS) phase was detected. EDX analysis revealed compositions with Cu-poor content and Zn-rich content across all samples, with slight variations in sulfurization dwell times affecting the chemical composition. SEM imaging at different magnifications showed alterations in surface morphology and grain structures. Films sulfurized for 30 s and 60 s displayed a granular structure morphology, while extending the dwell time to 120 s resulted in a more compact surface morphology. Optical band gap values ranged between 1.57 and 1.60 eV. PL measurements consistently exhibited strong PL emission around 1.25 eV for all samples, attributed to various transitions within the band structure of CZTS film. The absence of observable band-to-band transitions in the PL measurements indicated the presence of intrinsic defect levels and recombination centers within CZTS. Overall, it was demonstrated in this study that CZTS thin films can be produced on flexible Cu-foils with short sulfurization times, thereby expanding the application areas of CZTS thin-film solar cells.
Açıklama
Anahtar Kelimeler
Nanobilim ve Nanoteknoloji, Enerji ve Yakıtlar, Mühendislik, Kimya, CZTS thin film, Sputtering, Cu-foil, RTP, Short sulfurization time
Kaynak
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
13
Sayı
3